Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 26, 2020

Development of SiO2 based doped with LiF, Cr2O3, CoO4 and B2O3 glasses for gamma and fast neutron shielding

  • Bünyamin Aygün EMAIL logo , Erdem Şakar , Abdulhalik Karabulut , Bünyamin Alım , Mohammed I. Sayyed , Vishwanath P. Singh , Nergiz Yıldız Yorgun and Özgür Fırat Özpolat
From the journal Radiochimica Acta

Abstract

In this study, the fast neutron and gamma-ray absorption capacities of the new glasses have been investigated, which are obtained by doping CoO,CdWO4,Bi2O3, Cr2O3, ZnO, LiF,B2O3 and PbO compounds to SiO2 based glasses. GEANT4 and FLUKA Monte Carlo simulation codes have been used in the planning of the samples. The glasses were produced using a well-known melt-quenching technique. The effective neutron removal cross-sections, mean free paths, half-value layer, and transmission numbers of the fabricated glasses have been calculated through both GEANT4 and FLUKA Monte Carlo simulation codes. Experimental neutron absorbed dose measurements have been carried out. It was found that GS4 glass has the best neutron protection capacity among the produced glasses. In addition to neutron shielding properties, the gamma-ray attenuation capacities, were calculated using newly developed Phy-X/PSD software. The gamma-ray shielding properties of GS1 and GS2 are found to be equivalent to Pb-based glass.


Corresponding author: Bünyamin Aygün, Department of Electronics and Automation, Vocational School, Agi Ibrahim Cecen University, Agri, Turkey, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Office, R. P. Radiation Safety Manual; Environmental Health, 2007.Search in Google Scholar

2. Aygün, B., Şakar, E., Korkut, T., Sayyed, M. I., Karabulut, A. New high temperature resistant heavy concretes for fast neutron and gamma radiation shielding. Radiochim. Acta 2019, 107, 359, https://doi.org/10.1515/ract-2018-3075.Search in Google Scholar

3. Sayyed, M. I., Tekin, H. O., Kılıcoglu, O., Agar, O., Zaid, M. H. M. Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results Phys. 2018, 11, 40, https://doi.org/10.1016/j.rinp.2018.08.029.Search in Google Scholar

4. Aygün, B. Neutron and gamma radiation shielding properties of high-temperature-resistant heavy concretes including chromite and wolframite. J. Radiat. Res. Appl. Sci. 2019, 12, 352, https://doi.org/10.1080/16878507.2019.1672312.Search in Google Scholar

5. Obaid, S. S., Sayyed, M. I., Gaikwad, D. K., Pawar, P. P. Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiat. Phys. Chem. 2018, 148, 86, https://doi.org/10.1016/j.radphyschem.2018.02.026.Search in Google Scholar

6. Obaid, S. S., Gaikwad, D. K., Pawar, P. P. Determination of gamma ray shielding parameters of rocks and concrete. Radiat. Phys. Chem. 2018, 144, 356, https://doi.org/10.1016/j.radphyschem.2017.09.022.Search in Google Scholar

7. Korkut, T., Aygün, B., Bayram, Ö., Karabulut, A. Study of neutron attenuation properties of super alloys with added rhenium. J. Radioanal. Nucl. Chem. 2015, 306, 119, https://doi.org/10.1007/s10967-015-4063-z.Search in Google Scholar

8. Akman, F., Kaçal, M. R., Sayyed, M. I., Karataş, H. A. Study of gamma radiation attenuation properties of some selected ternary alloys. J. Alloys Compd. 2019, 782, 315, https://doi.org/10.1016/j.jallcom.2018.12.221.Search in Google Scholar

9. Alım, B., Şakar, E., Baltakesmez, A., Han, İ., Sayyed, M. I., Demir, L. Experimental investigation of radiation shielding performances of some important AISI-coded stainless steels: Part I. Radiat. Phys. Chem. 2020, 166, 108.10.1016/j.radphyschem.2019.108455Search in Google Scholar

10. Singh, V. P., Medhat, M. E., Shirmardi, S. P. Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat. Phys. Chem. 2015, 106, 255, https://doi.org/10.1016/j.radphyschem.2014.07.002.Search in Google Scholar

11. Şakar, E. Determination of photon-shielding features and build-up factors of nickel–silver alloys. Radiat. Phys. Chem. 2020, 172, 108.10.1016/j.radphyschem.2020.108778Search in Google Scholar

12. Alım, B. A comprehensive study on radiation shielding characteristics of Tin-Silver, Manganin-R, Hastelloy-B, Hastelloy-X and Dilver-P alloys. Appl. Phys. Mater. Sci. Process 2020, 126, 262.10.1007/s00339-020-3442-7Search in Google Scholar

13. Aygün, B., Alaylar, B., Turhan, K., Şakar, E., Karadayı, M., Sayyed, M. I., Pelit, E., Güllüce, M., Karabulut, A., Turgut, Z., Alım, B. Investigation of neutron and gamma radiation protective characteristics of synthesized quinoline derivatives. Int. J. Radiat. Biol. 2020, 15, 1, https://doi.org/10.1080/09553002.2020.1811421.Search in Google Scholar PubMed

14. Aygün, B., Korkut, T., Karabulut, A., Gencel, O., Karabulut, A. Production and neutron irradiation tests on a new epoxy/Molybdenum composite. Int. J. Polym. Anal. Char. 2015, 20, 323, https://doi.org/10.1080/1023666x.2015.1017790.Search in Google Scholar

15. Korkut, T., Gence, O., Kam, E., Brostow, W. X-ray, gamma, and neutron radiation tests on epoxy-ferrochromium slag composites by experiments and Monte Carlo simulations. Int. J. Polym. Anal. Char. 2013, 18, 244, https://doi.org/10.1080/1023666x.2013.755658.Search in Google Scholar

16. Akman, F., Kaçal, M. R., Almousa, N., Sayyed, M. I., Polat, H. Gamma-ray attenuation parameters for polymer composites reinforced with BaTiO3 and CaWO4 compounds. Prog. Nucl. Energy 2020, 121, https://doi.org/10.1016/j.pnucene.2020.103257.Search in Google Scholar

17. Abdalsalam, A. H., Sayyed, M. I., Ali Hussein, T., Şakar, E., Mhareb, M. H. A., Ceviz Şakar, B., Alim, B., Kaky, K. M. A study of gamma attenuation property of UHMWPE/Bi2O3 nanocomposites. Chem. Phys. 2019, 523, 92, https://doi.org/10.1016/j.chemphys.2019.04.013.Search in Google Scholar

18. Abdalsalam, A. H., Şakar, E., Kaky, K. M., Mhareb, M. H. A., Cevi̇z Şakar, B., Sayyed, M. I., Gürol, A. Investigation of gamma ray attenuation features of bismuth oxide nano powder reinforced high-density polyethylene matrix composites. Radiat. Phys. Chem. 2020, 168, 108, https://doi.org/10.1016/j.radphyschem.2019.108537.Search in Google Scholar

19. Al-Hadeethi, Y., Sayyed, M. I., Rammah, Y. S. Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2-PbO-Al2O3–CaO glasses. Ceram. Int. 2020, 46, 2055, https://doi.org/10.1016/j.ceramint.2019.09.185.Search in Google Scholar

20. Sayyed, M. I. Bismuth modified shielding properties of zinc boro-tellurite glasses. J. Alloys Compd. 2016, 688, 111, https://doi.org/10.1016/j.jallcom.2016.07.153.Search in Google Scholar

21. Kaewkhao, J., Korkut, T., Korkut, H., Aygün, B., Yasaka, P., Tuscharoen, S., Insiripong, S., Karabulut, A. Monte Carlo design and experiments on the neutron shielding performances of B2O3–ZnO–Bi2O3 glass system. Glass Phys. Chem. 2017, 43, 560, https://doi.org/10.1134/s1087659617060050.Search in Google Scholar

22. Sayyed, M. I., Lakshminarayana, G., Dong, M. G., Ersundu, M. Ç., Ersundu, A. E., Kityk, I. V. Investigation on gamma and neutron radiation shielding parameters for BaO/SrO‒Bi2O3‒B2O3 glasses. Radiat. Phys. Chem. 2018, 145, 26, https://doi.org/10.1016/j.radphyschem.2017.12.010.Search in Google Scholar

23. Singh, V. P., Badiger, N. M. Shielding efficiency of lead borate and nickel borate glasses for gamma rays and neutrons. Glass Phys. Chem. 2015, 41, 276, https://doi.org/10.1134/s1087659615030177.Search in Google Scholar

24. Aygün, B., Şakar, E., Cinan, E., Yorgun, N. Y., Sayyed, M. I., Agar, O., Karabulut, A. Development and production of metal oxide doped glasses for gamma ray and fast neutron shielding. Radiat. Phys. Chem. 2020, 174, 108, https://doi.org/10.1016/j.radphyschem.2020.108897.Search in Google Scholar

25. Vighnesh, K. R., Ramya, B., Nimitha, S., Wagh, A., Sayyed, M. I., Sakar, E., Yakout, H. A., Dahshan, A., Kamath, S. D. Structural, optical, thermal, mechanical, morphological & radiation shielding parameters of Pr3+ doped ZAlFB glass systems. Opt. Mater. 2020, 96, 109.10.1016/j.optmat.2019.109512Search in Google Scholar

26. Wagh, A., Sayyed, M. I., Askin, A., Özpolat, Ö. F., Sakar, E., Lakshminarayana, G., Kamath, S. D. Influence of RE oxides (Eu3+, Sm3+, Nd3+) on gamma radiation shielding properties of lead fluoroborate glasses. Solid State Sci. 2019, 96, https://doi.org/10.1016/j.solidstatesciences.2019.105959.Search in Google Scholar

27. Hassib, M. D., Kaky, K. M., Kumar, A., Şakar, E., Sayyed, M. I., Baki, S.O., Mahdi, M. A. Boro-silicate glasses co-doped Er+3/Yb+3 for optical amplifier and gamma radiation shielding applications. Phys. B Condens. Matter 2019, 567, 37, https://doi.org/10.1016/j.physb.2019.05.006.Search in Google Scholar

28. Al-Hadeethi, Y., Sayyed, M. I., Mohammed, H., Rimondini, L. X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 2020, 46, 251, https://doi.org/10.1016/j.ceramint.2019.08.258.Search in Google Scholar

29. Carella, E., Hernández, T. The effect of γ-radiation in Li4SiO4 ceramic breeder blankets. Fusion Eng. Des. 2015, 90, 73, https://doi.org/10.1016/j.fusengdes.2014.11.010.Search in Google Scholar

30. Chauhan, R. K., Mudgal, M., Verma, S., Amritphale, S. S., Das, S., Shrivastva, A. Development and design mix of radiation shielding concrete for gamma-ray shielding. J. Inorg. Organomet. Polym. Mater. 2017, 27, 871, https://doi.org/10.1007/s10904-017-0531-y.Search in Google Scholar

31. Nuhoǧlu, Ç., Tapan, M., Okutan, M., Aydn, S., Yalçn, Z., Içelli, O., Kavanoz, H. B., Orak, S. Resistivity, ESR, and radiation shielding properties of the volcanic rock materials. Adv. Condens. Matter Phys. 2014, 6. 2014.10.1155/2014/609161Search in Google Scholar

32. Ersundu, A. E., Büyükyıldız, M., Çelikbilek Ersundu, M., Şakar, E., Kurudirek, M. The heavy metal oxide glasses within the WO3-MoO3-TeO2 system to investigate the shielding properties of radiation applications. Prog. Nucl. Energy 2018, 104, 280, https://doi.org/10.1016/j.pnucene.2017.10.008.Search in Google Scholar

33. Gaikwad, D. K., Obaid, S. S., Sayyed, M. I., Bhosale, R. R., Awasarmol, V. V., Kumar, A., Shirsat, M. D., Pawar, P. P. Comparative study of gamma ray shielding competence of WO3-TeO2-PbO glass system to different glasses and concretes. Mater. Chem. Phys. 2018, 213, 508, https://doi.org/10.1016/j.matchemphys.2018.04.019.Search in Google Scholar

34. Halimah, M. K., Azuraida, A., Ishak, M., Hasnimulyati, L. Influence of bismuth oxide on gamma radiation shielding properties of boro-tellurite glass. J. Non-Cryst. Solids 2019, 512, 140, https://doi.org/10.1016/j.jnoncrysol.2019.03.004.Search in Google Scholar

35. Gerward, L., Guilbert, N., Jensen, K. B., Levring, H. WinXCom - a program for calculating X-ray attenuation coefficients. Radiat. Phys. Chem. 2004, 71, 653, https://doi.org/10.1016/j.radphyschem.2004.04.040.Search in Google Scholar

36. Sayyed, M. I. Investigations of gamma ray and fast neutron shielding properties of tellurite glasses with different oxide compositions. Can. J. Phys. 2016, 94, 1, https://doi.org/10.1139/cjp-2016-0330.Search in Google Scholar

37. Singh, V. P., Badiger, N. M., Chanthima, N., Kaewkhao, J. Evaluation of gamma-ray exposure buildup factors and neutron shielding for bismuth borosilicate glasses. Radiat. Phys. Chem. 2014, 98, 14, https://doi.org/10.1016/j.radphyschem.2013.12.029.Search in Google Scholar

38. Sayyed, M. I., Kumar, A., Tekin, H. O., Kaur, R., Singh, M., Agar, O., Khandaker, M. U. Evaluation of gamma-ray and neutron shielding features of heavy metals doped Bi2O3-BaO-Na2O-MgO-B2O3 glass systems. Prog. Nucl. Energy 2020, 118, 1, https://doi.org/10.1016/j.pnucene.2019.103118.Search in Google Scholar

39. Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., Kurudirek, M. Phy-X / PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 2020, 166, 108.10.1016/j.radphyschem.2019.108496Search in Google Scholar

40. US Department of Energy. Nuclear Physics and Reactor Theory Handbook 1993, 1, 1.Search in Google Scholar

41. Zhang, X., Yang, M., Zhang, X., Wu, H., Guo, S., Wang, Y. Enhancing the neutron shielding ability of polyethylene composites with an alternating multi-layered structure. Compos. Sci. Technol. 2017, 150, 16, https://doi.org/10.1016/j.compscitech.2017.06.007.Search in Google Scholar

42. Al-Hadeethi, Y., Al-Buriahi, M. S., Sayyed, M. I. Bioactive glasses and the impact of Si3N4 doping on the photon attenuation up to radiotherapy energies. Ceram. Int. 2020, 46, 5306, https://doi.org/10.1016/j.ceramint.2019.10.281.Search in Google Scholar

43. Mahmoud, M. E., El-Khatib, A. M., Halbas, A. M., El-Sharkawy, R. M. Investigation of physical, mechanical and gamma-ray shielding properties using ceramic tiles incorporated with powdered lead oxide. Ceram. Int. 2020, 46, 15686, https://doi.org/10.1016/j.ceramint.2020.03.119.Search in Google Scholar

44. Ferrari, A., Sala, P. R., Fasso, A., Ranft, J. FLUKA: A Multi-Particle Transport Code; Stanford Linear Accelerator Center, Stanford University: Stanford, CA, 2005.10.2172/877507Search in Google Scholar

45. Andersen, V., Ballarini, F., Battistoni, G., Campanella, M., Carboni, M., Cerutti, F., Empl, A., Fassò, A., Ferrari, A., Gadioli, E., Garzelli, M. V., Lee, K., Ottolenghi, A., Pelliccioni, M., Pinsky, L. S., Ranft, J., Roesler, S., Sala, P. R., Wilson, T. L. The FLUKA code for space applications: recent developments. Adv. Space Res. 2004, 34, 1302, https://doi.org/10.1016/j.asr.2003.03.045.Search in Google Scholar

46. Battistoni, G., Boehlen, T., Cerutti, F., Chin, P. W., Esposito, L. S., Fassò, A., Ferrari, A., Lechner, A., Empl, A., Mairani, A., Mereghetti, A., Ortega, P. G., Ranft, J., Roesler, S., Sala, P. R., Vlachoudis, V., Smirnov, G. Overview of the FLUKA code. Ann. Nucl. Energy 2015, 82, 10, https://doi.org/10.1016/j.anucene.2014.11.007.Search in Google Scholar

47. Bashter, I. I. Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 1997, 24, 1389, https://doi.org/10.1016/s0306-4549(97)00003-0.Search in Google Scholar

Received: 2020-07-01
Accepted: 2020-10-20
Published Online: 2020-11-26
Published in Print: 2021-02-23

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0067/html
Scroll to top button