Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) November 26, 2020

Dosimetry and methodology of gamma irradiation for degradation studies on solvent extraction systems

  • Bart Verlinden , Peter Zsabka , Karen Van Hecke EMAIL logo , Ken Verguts , Liviu-Cristian Mihailescu , Giuseppe Modolo , Marc Verwerft , Koen Binnemans and Thomas Cardinaels
From the journal Radiochimica Acta

Abstract

The recycling of minor actinides from dissolved nuclear fuels by hydrometallurgical separation is one challenging strategy for the management of spent fuel. These future separation processes will likely be based on solvent extraction processes in which an organic solvent system (extractant and diluent) will be contacted with highly radioactive aqueous solutions. To establish a separation between different elements in spent nuclear fuel, many extractants have been studied in the past. A particular example is N,N,N′,N′-tetraoctyl diglycolamide (TODGA), which co-extracts lanthanides and actinides from nitric acid solutions into an organic phase (e.g. TODGA in n-dodecane). The radiolytic stability of these extractants is crucial, since they will absorb high doses of ionizing radiation during their usage. Worldwide, different gamma irradiation facilities are employed to expose extractants to ionizing radiation and gain insight in their radiation stability. The facilities differ in many ways, such as their environment (pool-type or dry), configuration and gamma sources (often 60Co or spent nuclear fuel). In this paper, a dosimetric assessment is made using different dosimeter systems in a pool-type irradiation facility, which has the advantage to be flexible in its arrangement of 60Co sources. It is shown that Red Perspex dosimeters can be used to accurately characterize this high dose rate gamma irradiation field (approx. 13.6 kGy h−1), after comparison with alanine, Fricke and ceric-cerous dosimetry in a lower dose rate gamma irradiation field (approx. 0.5 kGy h−1). A final validation of the whole chain of techniques is obtained by reproduction of the dose constants for TODGA in n-dodecane.


Corresponding author: Karen Van Hecke, Institute for Nuclear Materials Science, Belgian Nuclear Research Center (SCK CEN), 2400 Mol, Belgium, E-mail:

Acknowledgments

The author would like to thank the NEO unit at SCK CEN for making the irradiation experiments possible. B.V. acknowledges the SCK CEN Academy for providing funding for a PhD fellowship. Analyses of the irradiated samples was conducted at Forschungszentrum Jülich GmbH (Germany) at ZEA-3 by Michelle Hupert with support of Andreas Wilden (IEK-6). The author would also like to thank the people of the Laboratory for Nuclear Calibrations (LNK) of SCK CEN.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: B.V. acknowledges the SCK CEN Academy for providing funding for a PhD fellowship.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Taylor, R. Reprocessing and Recycling of Spent Nuclear Fuel; Woodhead Publishing United Kindom: United Kindom, 2015; pp. 684.Search in Google Scholar

2. Lanham, W. B., Runion, T. C. PUREX Process for Plutonium and Uranium Recovery; Oak Ridge National Laboratory: United States, 1949.10.2172/4165457Search in Google Scholar

3. Madic, C., Boullis, B., Baron, P., Testard, F., Hudson, M. J., Liljenzin, J. O., Christiansen, B., Ferrando, M., Facchini, A., Geist, A., Modolo, G., Espartero, A. G., De Mendoza, J. Futuristic back-end of the nuclear fuel cycle with the partitioning of minor actinides. J. Alloys Compd. 2007, 444-445, 23. https://doi.org/10.1016/j.jallcom.2007.05.051.Search in Google Scholar

4. Modolo, G., Geist, A., Miguirditchian, M. Minor actinide separations in the reprocessing of spent nuclear fuels. In Reprocessing and Recycling of Spent Nuclear Fuel; Taylor, R., Ed. Woodhead Publishing United Kingdom, 2015; pp. 245–287.10.1016/B978-1-78242-212-9.00010-1Search in Google Scholar

5. Sasaki, Y., Sugo, Y., Suzuki, S., Tachimori, S. The novel extractants, diglycolamides, for the extraction of lanthanides and actinides in HNO3-n-dodecane system. Solvent Extr. Ion Exch. 2001, 19, 91. https://doi.org/10.1081/SEI-100001376.Search in Google Scholar

6. Ansari, S. A., Pathak, P., Mohapatra, P. K., Manchanda, V. K. Chemistry of diglycolamides: promising extractants for actinide partitioning. Chem. Rev. 2012, 112, 1751. https://doi.org/10.1021/cr200002f.Search in Google Scholar

7. Mezyk, S. P., Horne, G. P., Mincher, B. J., Zalupski, P. R., Cook, A. R., Wishart, J. F. The chemistry of separations ligand degradation by organic radical cations. Procedia Chem 2016, 21, 61. https://doi.org/10.1016/j.proche.2016.10.009.Search in Google Scholar

8. Mezyk, S. P., Mincher, B. J., Dhiman, S. B., Layne, B., Wishart, J. F. The role of organic solvent radical cations in separations ligand degradation. J. Radioanal. Nucl. Chem. 2015, 307, 2445. https://doi.org/10.1007/s10967-015-4582-7.Search in Google Scholar

9. Mincher, B. J., Curry, R. D. Considerations for choice of a kinetic fig. of merit in process radiation chemistry for waste treatment. Appl. Radiat. Isot. 2000, 52, 189. https://doi.org/10.1016/S0969-8043(99)00161-X.Search in Google Scholar

10. Getoff, N. Radiation Chemistry and the Environment; International Atomic Energy Agency, 1998; pp. 121–131.Search in Google Scholar

11. Mincher, B. J., Arbon, R. E., Knighton, W. B., Meikrantz, D. H. Gamma-ray-induced degradation of PCBs in neutral isopropanol using spent reactor fuel. Appl. Radiat. Isot. 1994, 45, 879. https://doi.org/10.1016/0969-8043(94)90219-4.Search in Google Scholar

12. Ansari, S. A., Pathak, P. N., Manchanda, V. K., Husain, M., Prasad, A. K., Parmar, V. S. N,N,N′,N′‐Tetraoctyl diglycolamide (TODGA): a promising extractant for actinide‐partitioning from high‐level waste (HLW). Solvent Extr. Ion Exch. 2005, 23, 463. https://doi.org/10.1081/SEI-200066296.Search in Google Scholar

13. Sasaki, Y., Rapold, P., Arisaka, M., Hirata, M., Kimura, T., Hill, C., Cote, G. An additional insight into the correlation between the distribution ratios and the aqueous acidity of the TODGA system. Solvent Extr. Ion Exch. 2007, 25, 187. https://doi.org/10.1080/07366290601169345.Search in Google Scholar

14. Sasaki, Y., Tsubata, Y., Kitatsuji, Y., Sugo, Y., Shirasu, N., Morita, Y., Kimura, T. Extraction behavior of metal ions by TODGA, DOODA, MIDOA and NTAamide extractants from HNO3 to n-dodecane. Solvent Extr. Ion Exch. 2013, 31, 401. https://doi.org/10.1080/07366299.2013.800431.Search in Google Scholar

15. Zarzana, C. A., Groenewold, G. S., Mincher, B. J., Mezyk, S. P., Wilden, A., Schmidt, H., Modolo, G., Wishart, J. F., Cook, A. R. A comparison of the γ-radiolysis of TODGA and T(EH)DGA using UHPLC-ESI-MS analysis. Solvent Extr. Ion Exch. 2015, 33, 431. https://doi.org/10.1080/07366299.2015.1012885.Search in Google Scholar

16. Galán, H., Núñez, A., Espartero, A. G., Sedano, R., Durana, A., de Mendoza, J. Radiolytic stability of TODGA: characterization of degraded samples under different experimental conditions. Procedia. Chem. 2012, 7, 195. https://doi.org/10.1016/j.proche.2012.10.033.Search in Google Scholar

17. Sugo, Y., Izumi, Y., Yoshida, Y., Nishijima, S., Sasaki, Y., Kimura, T., Sekine, T., Kudo, H. Influence of diluent on radiolysis of amides in organic solution. Radiat. Phys. Chem. 2007, 76, 794. https://doi.org/10.1016/j.radphyschem.2006.05.008.Search in Google Scholar

18. Sugo, Y., Sasaki, Y., Tachimori, S. Studies on hydrolysis and radiolysis of N,N,N′,N′-tetraoctyl-3-oxapentane-1,5-diamide. Radiochim. Acta 2002, 90, 161. https://doi.org/10.1524/ract.2002.90.3_2002.161.Search in Google Scholar

19. Galán, H., Zarzana, C. A., Wilden, A., Nunez, A., Schmidt, H., Egberink, R. J., Leoncini, A., Cobos, J., Verboom, W., Modolo, G., Groenewold, G. S., Mincher, B. J. Gamma-radiolytic stability of new methylated TODGA derivatives for minor actinide recycling. Dalton Trans. 2015, 44, 18049. https://doi.org/10.1039/C5DT02484F.Search in Google Scholar

20. Wilden, A., Mincher, B. J., Mezyk, S. P., Twight, L., Rosciolo-Johnson, K. M., Zarzana, C. A., Case, M. E., Hupert, M., Stark, A., Modolo, G. Radiolytic and hydrolytic degradation of the hydrophilic diglycolamides. Solvent Extr. Ion Exch. 2018, 36, 347. https://doi.org/10.1080/07366299.2018.1495384.Search in Google Scholar

21. Modolo, G., Odoj, R. Influence of the purity and irradiation stability of Cyanex 301 on the separation of trivalent actinides from lanthanides by solvent extraction. J. Radioanal. Nucl. Chem. 1998, 228, 83. https://doi.org/10.1007/bf02387304.Search in Google Scholar

22. Modolo, G., Seekamp, S. Hydrolysis and radiation stability of the ALINA solvent for actinide(III)/Lanthanide(III) separation during the partitioning of minor actinides. Solvent Extr. Ion Exch. 2002, 20, 195. https://doi.org/10.1081/SEI-120003021.Search in Google Scholar

23. Schmidt, H., Wilden, A., Modolo, G., Bosbach, D., Santiago-Schübel, B., Hupert, M., Švehla, J., Grüner, B., Ekberg, C. Gamma radiolysis of the highly selective ligands CyMe4BTBP and CyMe4BTPhen: qualitative and quantitative investigation of radiolysis products. Procedia Chem 2016, 21, 32. https://doi.org/10.1016/j.proche.2016.10.005.Search in Google Scholar

24. Horne, G. P., Mezyk, S. P., Mincher, B. J., Zarzana, C. A., Rae, C., Tillotson, R. D., Schmitt, N. C., Ball, R. D., Ceder, J., Charbonnel, M.-C., Guilbaud, P., Saint-Louis, G., Berthon, L. DEHBA (di-2-ethylhexylbutyramide) gamma radiolysis under spent nuclear fuel solvent extraction process conditions. Radiat. Phys. Chem. 2019, 170, 108608. https://doi.org/10.1016/j.radphyschem.2019.108608.Search in Google Scholar

25. Aneheim, E., Bauhn, L., Ekberg, C., Foreman, M., Löfström-Engdahl, E. Extraction experiments after radiolysis of a proposed GANEX solvent - the effect of time. Procedia Chem 2012, 7, 123. https://doi.org/10.1016/j.proche.2012.10.022.Search in Google Scholar

26. Malo, M., Garcia-Cortes, I., Munoz, P., Morono, A., Hodgson, E. R. A dedicated system for in situ testing of gamma ray induced optical absorption and emission in optical materials. Rev. Sci. Instrum. 2018, 89, 065109. https://doi.org/10.1063/1.5024990.Search in Google Scholar

27. Garbil, R., Sánchez-García, I., Galán, H., Perlado, J. M., Cobos, J., Davies, C., Diaconu, D. Stability studies of GANEX system under different irradiation conditions. EPJ Nucl. Sci. Technol 2019, 5, 19. https://doi.org/10.1051/epjn/2019049.Search in Google Scholar

28. Humphreys, J. C., Hocken, D., McLaughlin, W. L. Dosimetry for High Dose Applications; Centre for Radiation Research, National Measurement Laboratory, National Bureau of Standards: Washington, USA, 1988.10.6028/NBS.SP.250-11Search in Google Scholar

29. Clough, R. L. High-energy radiation and polymers: a review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B 2001, 185, 8. https://doi.org/10.1016/S0168-583X(01)00966-1.Search in Google Scholar

30. Premnath, V., Harris, W. H., Jasty, M., Merrill, E. W. Gamma sterilization of UHMWPE articular implants: an analysis of the oxidation problem. Ultra High Molecular Weight Poly Ethylene. Biomaterials 1996, 17, 1741. https://doi.org/10.1016/0142-9612(95)00349-5.Search in Google Scholar

31. Sutula, L. C., Collier, J. P., Saum, K. A., Currier, B. H., Currier, J. H., Sanford, W. M., Mayor, M. B., Wooding, R. E., Sperling, D. K., Williams, I. R.. The Otto Aufranc Award. Impact of gamma sterilization on clinical performance of polyethylene in the hip. Clin. Orthop. Relat. Res. 1995, 28.10.1097/00003086-199510000-00004Search in Google Scholar

32. Farkas, J Irradiation for better foods. Trends Food Sci. Technol. 2006, 17, 148. https://doi.org/10.1016/j.tifs.2005.12.003.Search in Google Scholar

33. Peterman, D., Geist, A., Mincher, B., Modolo, G., Galán, M. H., Olson, L., McDowell, R. Performance of an i-SANEX system based on a water-soluble BTP under continuous irradiation in a γ-radiolysis test loop. Ind. Eng. Chem. Res. 2016, 55, 10427. https://doi.org/10.1021/acs.iecr.6b02862.Search in Google Scholar

34. Mincher, B. J., Precek, M., Paulenova, A. The redox chemistry of neptunium in γ-irradiated aqueous nitric acid in the presence of an organic phase. J. Radioanal. Nucl. Chem. 2015, 308, 1005. https://doi.org/10.1007/s10967-015-4530-6.Search in Google Scholar

35. Mincher, B. J., Mezyk, S. P., Elias, G., Groenewold, G. S., Riddle, C. L., Olson, L. G. The radiation chemistry of CMPO: Part 1. Gamma radiolysis. Solvent Extr. Ion Exch. 2013, 31, 715. https://doi.org/10.1080/07366299.2013.815491.Search in Google Scholar

36. Mincher, B. J. Degradation issues in aqueous reprocessing systems. In: Comprehensive Nuclear Materials, 5; Elsevier, 2012; pp 367–388.10.1016/B978-0-08-056033-5.00104-XSearch in Google Scholar

37. Hubscher-Bruder, V., Mogilireddy, V., Michel, S., Leoncini, A., Huskens, J., Verboom, W., Galán, H., Núñez, A., Cobos, J., Modolo, G., Wilden, A., Schmidt, H., Charbonnel, M. C., Guilbaud, P., Boubals, N. Behaviour of the extractant Me-TODGA upon gamma irradiation: quantification of degradation compounds and individual influences on complexation and extraction. New J. Chem. 2017, 41, 13700. https://doi.org/10.1039/C7NJ02136D.Search in Google Scholar

38. Drader, J. A., Boubals, N., Cames, B., Guillaumont, D., Guilbaud, P., Saint-Louis, G., Berthon, L. Radiolytic stability of N,N-dialkyl amide: effect on Pu(IV) complexes in solution. Dalton Trans. 2017, 47, 251. https://doi.org/10.1039/C7DT03447D.Search in Google Scholar

39. Fernandez, A. F., Brichard, B., Berghmans, F., Decreton, M. Dose-rate dependencies in gamma-irradiated fiber Bragg grating filters. IEEE Trans. Nucl. Sci. 2002, 49, 2874. https://doi.org/10.1109/TNS.2002.805985.Search in Google Scholar

40. Chu, R. D. H., McLaughlin, W. L., Miller, A., Sharpe, P. H. G. Dosimetry systems for use in radiation processing. J. ICRU 2008, 8, 1. https://doi.org/10.1016/0969-806X(95)00349-3.Search in Google Scholar

41. ISO/ASTM. Practice for Dosimetry in Radiation Processing; 52628:2013(E): Switzerland, 2013.Search in Google Scholar

42. Matthews, R. W. Aqueous chemical dosimetry. Int. J. Appl. Radiat. Isot. 1982, 33, 1159. https://doi.org/10.1016/0020-708X(82)90241-1.Search in Google Scholar

43. ISO/ASTM. Standard Practice for Using the Fricke Dosimetry System; 51026:2015(E): Switzerland, 2015.Search in Google Scholar

44. ISO/ASTM. Standard Practice for Use of a Ceric-Cerous Sulfate Dosimetry System. 51205:2009(E): United States of America, 2009.Search in Google Scholar

45. Levine, H., McLaughlin, W. L., Miller, A. Temperature and humidity effects on the gamma-ray response and stability of plastic and dyed plastic dosimeters. Radiat. Phys. Chem. 1979, 14, 551. https://doi.org/10.1016/0146-5724(79)90091-8.Search in Google Scholar

46. Malmbeck, R., Magnusson, D., Geist, A. Modified diglycolamides for grouped actinide separation. J. Radioanal. Nucl. Chem. 2017, 314, 2531. https://doi.org/10.1007/s10967-017-5614-2.Search in Google Scholar

47. Zsabka, P., Van Hecke, K., Adriaensen, L., Wilden, A., Modolo, G., Verwerft, M., Binnemans, K., Cardinaels, T. Solvent extraction of Am(III), Cm(III), and ln(III) ions from simulated highly active raffinate solutions by TODGA diluted in aliquat-336 nitrate ionic liquid. Solvent Extr. Ion Exch. 2018, 36, 519. https://doi.org/10.1080/07366299.2018.1545288.Search in Google Scholar

48. Zsabka, P., Van Hecke, K., Wilden, A., Modolo, G., Verwerft, M., Binnemans, K., Cardinaels, T. Selective extraction of americium from curium and the lanthanides by the lipophilic ligand CyMe4BTPhen dissolved in aliquat-336 nitrate ionic liquid. Solvent Extr. Ion Exch. 2020, 38, 194. https://doi.org/10.1080/07366299.2019.1708006.Search in Google Scholar

49. Zsabka, P., Van Hecke, K., Wilden, A., Modolo, G., Hupert, M., Jespers, V., Voorspoels, S., Verwerft, M., Binnemans, K., Cardinaels, T. Gamma radiolysis of TODGA and CyMe4BTPhen in the ionic liquid Tri-n-Octylmethylammonium nitrate. Solvent Extr. Ion Exch. 2020, 38, 212. https://doi.org/10.1080/07366299.2019.1710918.Search in Google Scholar

50. Fernandez, A., Ooms, H., Brichard, B., Coeck, M., Coenen, S., Berghmans, F., Decreton, M. CK·CEN Gamma Irradiation Facilities for Radiation Tolerance Assessment; IEEE Radiation Effects Data Workshop: Phoenix, AZ, USA, 2002. IEEE: Phoenix, AZ, USA.Search in Google Scholar

51. Lund, A., Shiotani, M. Applications of EPR in Radiation Research, Springer Cham: Heidelberg, New York, Dordrecht, London, 2014.10.1007/978-3-319-09216-4Search in Google Scholar

52. Anton, M. Uncertainties in alanine/ESR dosimetry at the physikalisch-technische Bundesanstalt. Phys. Med. Biol. 2006, 51, 5419. https://doi.org/10.1088/0031-9155/51/21/003.Search in Google Scholar

53. Anton, M. Development of a secondary standard for the absorbed dose to water based on the alanine EPR dosimetry system. Appl. Radiat. Isot. 2005, 62, 779. https://doi.org/10.1016/j.apradiso.2004.10.009.Search in Google Scholar

54. ASTM. Standard Practice for Monitoring the Calibration of Ultraviolet-Visible Spectrophotometers Whose Spectral Bandwidth Does Not Exceed 2 Nm; E925-09 (Reapproved 2014); United States of America, 2009.Search in Google Scholar

55. Behrens, R., Kowatari, M., Hupe, O. Secondary charged particle equilibrium in 137Cs and 60Co reference radiation fields. Radiat. Protect. Dosim. 2009, 136, 168. https://doi.org/10.1093/rpd/ncp173.Search in Google Scholar

56. ISO/ASTM. Practice for Use of a Polymethylmethacrylate Dosimetry System. 51276:2012(E); United States of America, 2012.Search in Google Scholar

57. ISO/ASTM. Practice for Use of the Alanine-EPR Dosimetry System: Switzerland, 51607:2013, 2013.Search in Google Scholar

58. Fermvik, A., Berthon, L., Ekberg, C., Englund, S., Retegan, T., Zorz, N. Radiolysis of solvents containing C5-BTBP: identification of degradation products and their dependence on absorbed dose and dose rate. Dalton Trans. 2009, 6421. https://doi.org/10.1039/B907084B.Search in Google Scholar

59. Treguer, M., de Cointet, C., Remita, H., Khatouri, J., Mostafavi, M., Amblard, J., Belloni, J., de Keyzer, R. Dose rate effects on radiolytic synthesis of Gold−Silver bimetallic clusters in solution. J. Phys. Chem. B 1998, 102, 4310. https://doi.org/10.1021/jp981467n.Search in Google Scholar

60. Chen, Y. P., Liu, S. Y., Yu, H. Q., Yin, H., Li, Q. R. Radiation-induced degradation of methyl orange in aqueous solutions. Chemosphere 2008, 72, 532. https://doi.org/10.1016/j.chemosphere.2008.03.054.Search in Google Scholar

61. Rodrigues, R. R., Grynberg, S. E., Ferreira, A. V., Belo, L. C. M., Squair, P. L., Sousa, R. V., Sebastião, R. C. O., Ribeiro, M. A. Retrieval of GammaCell 220 irradiator isodose curves with MCNP simulations and experimental measurements. Braz. J. Phys. 2010, 40, 120. https://doi.org/10.1590/s0103-97332010000100017.Search in Google Scholar

Received: 2020-04-22
Accepted: 2020-10-15
Published Online: 2020-11-26
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.4.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0040/html
Scroll to top button