Skip to main content
Log in

Ni–TiO2 Functional Composite Coatings Deposited from an Electrolyte Based on a Choline-Containing Ionic Liquid

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The process of electrodeposition of nickel–titanium dioxide composite coatings from an electrolyte based on a choline-containing ionic liquid was studied. To increase the content of the dispersed phase in the composite, it is appropriate to add water to the electrolyte. With inclusion of the titanium dioxide particles into a nickel matrix, the microhardness of the coating increases. The obtained coatings show electrocatalytic activity in the reactions of hydrogen and oxygen evolution in an alkaline aqueous solution, which can be used in electrolytic decomposition of water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Plechkova, N.V. and Seddon, K.R., Chem. Soc. Rev., 2008, vol. 37, pp. 123–150. https://doi.org/10.1039/b006677j

    Article  CAS  PubMed  Google Scholar 

  2. Abbott, A.P. and McKenzie, K.J., Phys. Chem. Chem. Phys., 2006, vol. 8, no. 37, pp. 4265–4279. https://doi.org/10.1039/B607329H

    Article  CAS  PubMed  Google Scholar 

  3. Abbott, A.P., Ryder, K.S., and König, U., Trans. Inst. Met. Finish., 2008, vol. 86, no. 4, pp. 196–204. https://doi.org/10.1179/174591908X327590

    Article  CAS  Google Scholar 

  4. Tomé, L.I.N., Baião, V., da Silva, W., and Brett, C.M.A., Appl. Mater. Today, 2018, vol. 10, pp. 30–50. https://doi.org/10.1016/j.apmt.2017.11.005

    Article  Google Scholar 

  5. Smith, E.L., Abbott, A.P., and Ryder, K.S., Chem. Rev., 2014, vol. 114, no. 21, pp. 11060–11082. https://doi.org/10.1021/cr300162p

    Article  CAS  PubMed  Google Scholar 

  6. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., Chem. Commun., 2003, no. 1, pp. 70–71. https://doi.org/10.1039/B210714G

    Article  Google Scholar 

  7. Danilov, F.I., Protsenko, V.S., Kityk, A.A., Shaiderov, D.A., Vasil’eva, E.A., Pramod Kumar, U., and Joseph Kennady, C., Prot. Met. Phys. Chem. Surf., 2017, vol. 53, no. 6, pp. 1131–1138. https://doi.org/10.1134/S2070205118010203

    Article  CAS  Google Scholar 

  8. Thiemig, D., Bund, A., Surf. Coat. Technol., 2008, vol. 202, no. 13, pp. 2976–2984. https://doi.org/10.1016/j.surfcoat.2007.10.035

    Article  CAS  Google Scholar 

  9. Chen, W., He, Y., and Gao, W., Surf. Coat. Technol., 2010, vol. 204, no. 15, pp. 2487–2492. https://doi.org/10.1016/j.surfcoat.2010.01.036

    Article  CAS  Google Scholar 

  10. Danilov, F.I., Kityk, A.A., Shaiderov, D.A., Bogdanov, D.A., Korniy, S.A., and Protsenko, V.S., Surf. Eng. Appl. Electrochem., 2019, vol. 55, no. 2, pp. 138–149. https://doi.org/10.3103/S106837551902008X

    Article  Google Scholar 

  11. Du, C., Zhao, B., Chen, X.-B., Birbilis, N., and Yang, H., Sci. Rep., , vol. 6, ID 29225. https://doi.org/10.1038/srep2922

    Article  Google Scholar 

  12. Li, R., Dong, Q., Xia, J., Luo, C., Sheng, L., Cheng, F., and Liang, J., Surf. Coat. Technol., 2019, vol. 366, pp. 138–145. https://doi.org/10.1016/j.surfcoat.2019.03.030

    Article  CAS  Google Scholar 

  13. Kityk, A.A., Shaiderov, D.A., Vasil′eva, E.A., Protsenko, V.S., and Danilov, F.I., Electrochim. Acta, 2017, vol. 245, pp. 133–145. https://doi.org/10.1016/j.electacta.2017.05.144

    Article  CAS  Google Scholar 

  14. Low, C.T.J., Wills, R.G.A., and Walsh, F.C., Surf. Coat. Technol., 2006, vol. 201, nos. 1–2, pp. 371–383. https://doi.org/10.1016/j.surfcoat.2005.11.123

    Article  CAS  Google Scholar 

  15. Walsh, F.C. and Ponce de Leon, C., Trans. Inst. Met. Finish., 2014, vol. 92, no. 2, pp. 83–98. https://doi.org/10.1179/0020296713Z.000000000161

    Article  CAS  Google Scholar 

  16. Eroglu, D. and West, A.C., J. Electrochem. Soc., 2013, vol. 160, no. 9, pp. D354–D360. https://doi.org/10.1149/2.052309jes

    Article  CAS  Google Scholar 

  17. Guglielmi, N., J. Electrochem. Soc., 1972, vol. 119, no. 8, pp. 1009–1012. https://doi.org/10.1149/1.2404383

    Article  CAS  Google Scholar 

  18. Vasil’eva, E.A., Smenova, I.V., Protsenko, V.S., Konstantinova, T.E., and Danilov, F.I., Russ. J. Appl. Chem., 2013, vol. 86, no. 11, pp. 1735–1740. https://doi.org/10.1134/S1070427213110177

    Article  CAS  Google Scholar 

  19. Maurin, G. and Lavanant, A., J. Appl. Electrochem., 1995, vol. 25, no. 12, pp. 1113–1121. https://doi.org/10.1007/BF00242538

    Article  CAS  Google Scholar 

  20. Ahmad, Y.H. and Mohamed, A.M.A., Int. J. Electrochem. Sci., 2014, vol. 9, no. 1, pp. 1942–1963.

    Google Scholar 

  21. Tseluikin, V.N., Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 2, pp. 254–266. https://doi.org/10.1134/S2070205116010251

    Article  CAS  Google Scholar 

  22. Baghery, P., Farzam, M., Mousavi, A.B., and Hosseini, M., Surf. Coat. Technol., 2010, vol. 204, no. 23, pp. 3804–3810. https://doi.org/10.1016/j.surfcoat.2010.04.061

    Article  CAS  Google Scholar 

  23. Wang, W., Hou, F.-Y., Wang, H., and Guo, H.-T., Scr. Mater., 2005, vol. 53, no. 5, pp. 613–618. https://doi.org/10.1016/j.scriptamat.2005.04.002

    Article  CAS  Google Scholar 

  24. Hou, F., Wang, W., and Guo, H., Appl. Surf. Sci., 2006, vol. 252, no. 10, pp. 3812–3817. https://doi.org/10.1016/j.apsusc.2005.05.076

    Article  CAS  Google Scholar 

  25. Mokabber, T., Rastegari, S., and Razavizadeh, H., Surf. Eng., 2013, vol. 29, no. 1, pp. 41–45. https://doi.org/10.1179/1743294412Y.0000000077

    Article  CAS  Google Scholar 

  26. Safizadeh, F., Ghali, E., and Houlachi, G., Int. J. Hydrogen Energy, 2015, vol. 40, no. 1, pp. 256–274. https://doi.org/10.1016/j.ijhydene.2014.10.109

    Article  CAS  Google Scholar 

  27. Jamesh, M.I.J., Power Sources, 2016, vol. 333, pp. 213–236. https://doi.org/10.1016/j.jpowsour.2016.09.161

    Article  CAS  Google Scholar 

  28. Wang, S., Zou, X., Lu, Y., Rao, S., Xie, X., Pang, Z., Lu, X., Xu, Q., and Zhou, Z., Int. J. Hydrogen Energy, 2018, vol. 43, no. 33, pp. 15673–15686. https://doi.org/10.1016/j.ijhydene.2018.06.188

    Article  CAS  Google Scholar 

  29. Kullaiah, R., Elias, L., and Hegde, A.C., Int. J. Miner. Metall. Mater., 2018, vol. 25, no. 4, pp. 472–479. https://doi.org/10.1007/s12613-018-1593-8

    Article  CAS  Google Scholar 

  30. Protsenko, V.S., Bogdanov, D.A., Korniy, S.A., Kityk, A.A., Baskevich, A.S., and Danilov, F.I., Int. J. Hydrogen Energy, 2019, vol. 44, no. 45, pp. 24604–24616. https://doi.org/10.1016/j.ijhydene.2019.07.188

    Article  CAS  Google Scholar 

  31. Gierlotka, D., Rówiński, E., Budniok, A., and Łagiewka, E., J. Appl. Electrochem., 1997, vol. 27, no. 12, pp. 1349–1354. https://doi.org/10.1023/A:1018416927715

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Science and Education of Ukraine (project 0118U003398).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Protsenko.

Ethics declarations

The authors declare than they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Protsenko, V.S., Bogdanov, D.A., Kityk, A.A. et al. Ni–TiO2 Functional Composite Coatings Deposited from an Electrolyte Based on a Choline-Containing Ionic Liquid. Russ J Appl Chem 93, 1525–1532 (2020). https://doi.org/10.1134/S1070427220100067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220100067

Keywords:

Navigation