Skip to main content
Log in

Fabrication of Highly Active Ag3PO4/ZnO/Diatomite for Visible Light Photocatalytic Degradation of Tetracycline Hydrochloride

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A novel Ag3PO4/ZnO/diatomite composite photocatalyst was prepared by simple ultrasonic dispersion-precipitation method. The structure, composition, microstructure and optical properties of the catalysts were characterized by means of X-ray diffraction (XRD), fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), transmission electron microscope (TEM) and UV-vis diffuse reflectance spectra (UV-vis DRS). Moreover, the visible light catalytic performance of the catalyst was investigated with tetracycline hydrochloride (TC) as the degradation target. The results showed that the photocatalytic activity of Ag3PO4/ZnO/diatomite in the degradation of TC, which can reach 90.99% removal rate of 30 mg/L TC under visible light, was significantly better than that of monomer catalysts and Ag3PO4/ZnO catalyst. Meanwhile, it exhibited better stability compared with pure Ag3PO4. The improvement of visible light catalytic activity and stability of Ag3PO4/ZnO/diatomite is mainly attributed to the catalyst’s better adsorption capacity, wider spectral response range, more efficient photo-generated electrons and holes migration and less photocorrosion. The results of free radical trapping experiments show that the main active species of the reaction system are h+ and •O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Kümmerer, K., Chemosphere, 2009, vol. 75, no. 4, pp. 417–434. https://doi.org/10.1016/j.chemosphere.2008.11.086

    Article  CAS  PubMed  Google Scholar 

  2. Bu, Q. W., Wang, B., Huang, J., et al., Chemosphere, 2016, vol. 144, pp. 1384–1390. https://doi.org/10.1016/j.chemosphere.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  3. Gupta, P.V., Nirwane, A.M., Bellubi, T., et al., Nanomedicine, 2017, vol. 13, no. 7, pp. 2371–2384. https://doi.org/10.1016/j.nano.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  4. Zhang, Q., Ying, G., Pan, C., et al., Environ. Sci. Technol., 2015, vol. 49, no. 11, pp. 6772–6782. https://doi.org/10.1021/acs.est.5b00729

    Article  CAS  PubMed  Google Scholar 

  5. Nghiem, L.D., Manis, A., Soldenhoff, K., et al., J. Membrane Sci., 2004, vol. 242, nos. 1-2, pp. 37–45. https://doi.org/10.1016/j.memsci.2003.12.034

    Article  CAS  Google Scholar 

  6. Ternes, T.A., Stueber, J., Herrmann, N., et al., Water Res., 2003, vol. 37, no. 8, pp. 1976–1982. https://doi.org/10.1016/S0043-1354(02)00570-5

    Article  CAS  PubMed  Google Scholar 

  7. Huber, M.M., Canonica, S., Park, G.Y., et al., Environ. Sci. Technol., 2003, vol. 37, no. 5, pp. 1016–1024. https://doi.org/10.1021/es025896h

    Article  CAS  PubMed  Google Scholar 

  8. Ma, S., Gu, J. , Han, Y., et al., ACS Omega, 2019, vol. 4, no. 25, pp. 21063-21071. https://doi:10.1021/acsomega.9b02411

    Article  CAS  Google Scholar 

  9. Jiao, S., Zheng, S., Yin, D., et al., Chemosphere, 2008, vol. 73, no. 3, pp. 377–382. https://doi.org/10.1016/j.chemosphere.2008.05.042

    Article  CAS  PubMed  Google Scholar 

  10. Zhu, P., Ren, Z., Wang, R., Front. Mater. Sci., 2020, vol. 14, no. 1, pp. 33–42. https://doi.org/10.1007/s11706-020-0486-8

    Article  Google Scholar 

  11. Yi, Z., Ye, J., Kikugawa, N., et al., Nat. Mater., 2010, vol. 9, no. 7, pp. 559–564. https://doi.org/10.1038/nmat2780

    Article  CAS  PubMed  Google Scholar 

  12. Chen, Y., Zhu, P., Duan, M., et al., Appl. Surf. Sci., 2019, vol. 486, pp. 198–211. https://doi.org/10.1016/j.apsusc.2019.04.232

    Article  CAS  Google Scholar 

  13. Bi, Y., Ouyang, S., Umezawa, N., et al., J. Am. Chem. Soc., 2011, vol. 133, no. 17, pp. 6490–6492. https://doi.org/10.1021/ja2002132

    Article  CAS  PubMed  Google Scholar 

  14. Zhu, P., Chen, Y., Duan, M., et al., Catal. Sci. Technol., 2018, vol. 8, no. 15, pp. 3818–3832. https://doi.org/10.1039/C8CY01087K

    Article  CAS  Google Scholar 

  15. Tian, L., Yang, X., Cui, X., et al., Appl. Surf. Sci., 2019, vol. 463, pp. 9–17. https://doi.org/10.1016/j.apsusc.2018.08.209

    Article  CAS  Google Scholar 

  16. Kim, Y.G. and Jo, W.K., J. Hazard. Mater., 2019, vol. 361, pp. 64–72. https://doi.org/10.1016/j.jhazmat.2018.08.074

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, H.S., Yu, D., Wang, W., et al., Advanced Powder Technol., 2019, vol. 30, no. 9, pp. 1910–1919. https://doi.org/10.1016/j.apt.2019.06.010

    Article  CAS  Google Scholar 

  18. Teng, W., Tan, X., Li, X., et al., Appl. Surf. Sci., 2017, vol. 409, pp. 250–260. https://doi.org/10.1016/j.apsusc.2017.03.025

    Article  CAS  Google Scholar 

  19. Shi, W.L., Liu, C., Li, M.Y., et al., J. Hazard. Mater., 2020, vol. 389, pp. 121907. https://doi.org/10.1016/j.jhazmat.2019.121907

    Article  CAS  PubMed  Google Scholar 

  20. Tang, M.L., Ao, Y.H., Wang, C., et al., Appl. Catal. B., 2020, vol. 268, pp. 118395. https://doi.org/10.1016/j.apcatb.2019.118395

    Article  CAS  Google Scholar 

  21. Ong, C.B., Ng, L.Y., and Mohammad, A.W., Renew. Sust. Energ. Rev., 2018, vol. 81, pp. 536–551. https://doi.org/10.1016/j.rser.2017.08.020

    Article  CAS  Google Scholar 

  22. Qi, K.Z., Cheng, B., Yu, J.G., et al., J. Alloys Compd., 2017, vol. 727, pp. 792–820. https://doi.org/10.1016/j.jallcom.2017.08.142

    Article  CAS  Google Scholar 

  23. Qu, Y.N., Xu, X.J., Huang, R.L., et al., Chem. Eng. J., 2020, vol. 382, pp. 123016. https://doi.org/10.1016/j.cej.2019.123016

    Article  CAS  Google Scholar 

  24. Ruan, S.H., Huang, W.Q., Zhao, M.J., et al., Mater. Sci. Semicond. Process., 2020, vol. 107, pp. 104835. https://doi.org/10.1016/j.mssp.2019.104835

    Article  CAS  Google Scholar 

  25. Fernández, L., Gamallo, M., González-Gómez, M.A., et al., J. Environ. Manag., 2019, vol. 237, pp. 595–608. https://doi.org/10.1016/j.jenvman.2019.02.089

    Article  CAS  Google Scholar 

  26. Li, Q. and Yang, C., Mater. Lett., 2017, vol. 199, pp. 168–171. https://doi.org/10.1016/j.matlet.2017.04.058

    Article  CAS  Google Scholar 

  27. Martin-Gomez, A., Navio, J., Jaramillo-Paez, C., et al., J. Photoch. Photobio. A., 2020, vol. 388, pp. 112196. https://doi.org/10.1016/j.jphotochem.2019.112196

    Article  CAS  Google Scholar 

  28. Wu, Q., Wang, P., Niu, F., et al., Appl. Surf. Sci., 2016, vol. 378, pp. 552–563. https://doi.org/10.1016/j.apsusc.2016.03.158

    Article  CAS  Google Scholar 

  29. Sharma, M., Ojha, K., Ganguly, A., et al., New J. Chem., 2015, vol. 39, no. 12, pp. 9242–9248. https://doi.org/10.1039/C5NJ01157D

    Article  CAS  Google Scholar 

  30. Chai, Y., Ding, J., Wang, L., et al., Appl. Catal. B., 2015, vol. 179, pp. 29–36. https://doi.org/10.1016/j.apcatb.2015.05.006

    Article  CAS  Google Scholar 

  31. Luo, J., Duan, G., Wang, W., et al., Appl. Clay Sci., 2017, vol. 143, pp. 273–278. https://doi.org/10.1016/j.clay.2017.04.004

    Article  CAS  Google Scholar 

  32. Ma, J., Liu, Q., Zhu, L., et al., Appl. Catal. B., 2016, vol. 182, pp. 26–32. https://doi.org/10.1016/j.apcatb.2015.09.004

    Article  CAS  Google Scholar 

  33. Ma, J., Zou, J., Li, L., et al., Appl. Catal. B., 2014, vol. 144, pp. 36–40. https://doi.org/10.1016/j.apcatb.2013.06.029

    Article  CAS  Google Scholar 

  34. Zhu, P., Chen, Y., Duan, M., et al., Powder Technol., 2018, vol. 336, pp. 230–239. https://doi.org/10.1016/j.powtec.2018.05.060

    Article  CAS  Google Scholar 

  35. Tadjarodi, A., Izadi, M., Imani, M., Mater. Lett., 2013, vol. 92, pp. 108–110. https://doi.org/10.1016/j.matlet.2012.10.045

    Article  CAS  Google Scholar 

  36. Shaker-Agjekandy, S., Habibi-Yangjeh, A., Mater. Sci. Semicond. Process., 2015, vol. 34, pp. 74–81. https://doi.org/10.1016/j.mssp.2015.02.022

    Article  CAS  Google Scholar 

  37. Zhu, P., Chen, Y., Duan, M., et al., Russ. J. Appl. Chem., 2016, vol. 89, no. 12, pp. 2027−2034. https://doi.org/10.1134/S1070427216120144

    Article  CAS  Google Scholar 

  38. Fan, H., Ren, Q., Wang, S., Jin, Z., Ding, Y., J. Alloys Compd., 2019, vol. 775, pp. 845–852. https://doi.org/10.1016/j.jallcom.2018.10.152

    Article  CAS  Google Scholar 

  39. Faisal, M., Ismail, A., Ibrahim, A., et al., Chem. Eng. J., 2013, vol. 229, pp. 225–233. https://doi.org/10.1016/j.cej.2013.06.004

    Article  CAS  Google Scholar 

  40. Liu, M., Guo, Y., Lan, J., et al., ChemistrySelect, 2019, vol. 4, no. 45, pp. 13156–13162. https://doi.org/10.1002/slct.201903312

    Article  CAS  Google Scholar 

  41. Pudukudy, M., Hetieqa, A., and Yaakob, Z., Appl. Surf. Sci., 2014, vol. 319, pp. 221–229. https://doi.org/10.1016/j.apsusc.2014.07.050

    Article  CAS  Google Scholar 

  42. Liu, L., Ding, L., Liu, Y., et al., Appl. Catal. B., 2017, vol. 201, pp. 92–104. https://doi.org/10.1016/j.apcatb.2016.08.005

    Article  CAS  Google Scholar 

  43. Ren, J., Chai,Y., Liu, Q., et al., Appl. Surf. Sci., 2017, vol. 403, pp. 177–186. https://doi.org/10.1016/j.apsusc.2017.01.172

    Article  CAS  Google Scholar 

  44. Chen, S., Liu, F., Xu, M., et al., J. Colloid Interface Sci., 2019, vol. 553, pp. 613–621. https://doi.org/10.1016/j.jcis.2019.06.053

    Article  CAS  PubMed  Google Scholar 

  45. Xu, H., Wang, C., Song, Y., et al., Chem. Eng. J., 2014, vol. 241, pp. 35–42. https://doi.org/10.1016/j.cej.2013.11.065

    Article  CAS  Google Scholar 

  46. Chang, P., Li, Z., Jean, J., et al., Appl. Clay Sci., 2012, vol. 67–68, pp. 158–163. https://doi.org/10.1016/j.clay.2011.11.004

    Article  CAS  Google Scholar 

  47. Cao, W., Gui, Z., Chen, L., et al., Appl. Catal. B., 2017, vol. 200, pp. 681–689. https://doi.org/10.1016/j.apcatb.2016.07.030

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge the financial supports from the National Natural Science Foundation of China (no. 51974267) Sichuan science and technology support project (2020JDTD0018) and the Foundation of Youth Science and Technology Innovation Team of Sichuan Province (grant no. 2015TD0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Duan, M., Wang, R. et al. Fabrication of Highly Active Ag3PO4/ZnO/Diatomite for Visible Light Photocatalytic Degradation of Tetracycline Hydrochloride. Russ J Appl Chem 93, 1615–1627 (2020). https://doi.org/10.1134/S107042722010171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722010171

Keywords:

Navigation