Skip to main content
Log in

Multilayer Engineering of Polyaniline and Reduced Graphene Oxide Thin Films on a Plastic Substrate for Flexible Optoelectronic Applications Using NIR

  • Specific Technological Solutions
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

This article describes the photoconductive properties of a multilayer uniform ultrathin film comprising alternating polyaniline (PANi) and reduced graphene oxide (RGO) layers, fabricated on a poly(ethylene terephthalate) (PET) sheet. The fabrication of the two electron-rich layers on the PET substrate is successfully completed using a layer-by-layer (LBL) deposition technique under mild conditions and HI/H2O vapor treatment at 100°C. The photocurrent under illumination of >300 nm light exhibits 80 µA compared with that of obtained in the dark. However, it decreases to 75 µA under >460 nm light illumination and further increases to 80 µA under >600 nm light illumination (0.64 mW) at an applied voltage of 1.0 V. The PET sheets coated with (PANi/RGO)20 films (d = 46.3 nm) exhibits a photoresponsivity of 125 mA/W at an illunination intensity of 0.64 mW using red light (> 600 nm). The extraordinary optoelectronic characteristics of the (PANi/RGO) films are ascribed to the charge transfer complex formation of the two PANi and RGO layer components and also to the structural uniformity of the LBL-assembled optoelectronic thin films, which tended to favor the rapid interfacial charge transfer to the electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I.V., and Firsov, A.A., Science, 2004, vol. 306, pp. 666–669. https://doi.org/10.1126/science.1102896

    Article  CAS  Google Scholar 

  2. Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V., and Firsov, A.A., Nature, 2005, vol. 438, pp. 197–200. https://doi.org/10.1038/nature04233

    Article  CAS  Google Scholar 

  3. Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., and Geim, A.K., Science, 2008, vol. 320, pp. 1308–1308. https://doi.org/10.1126/science.1156965

    Article  CAS  PubMed  Google Scholar 

  4. Mayorov, A.S., Gorbachev, R.V., Morozov, S.V., Britnell, L., Jalil, R., Ponomarenko, L.A., Blake, P., Novoselov, K.S., Watanabe, K., Taniguchi, T., and Geim, A.K., Nano Letters, 2011, vol. 11, pp. 2396–2399. https://doi.org/10.1021/nl200758b

    Article  CAS  PubMed  Google Scholar 

  5. Lee, C., Wei, X., Kysar, J.W., and Hone, J., Science, 2008, vol. 321, pp. 385–388. https://doi.org/10.1126/science.1157996

    Article  CAS  PubMed  Google Scholar 

  6. Balandin, A.A., Nature Materials, 2011, vol. 10, pp. 569–581. https://doi.org/10.1038/nmat3064

    Article  CAS  PubMed  Google Scholar 

  7. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.J., Kim, K.S., Ozyilmaz, B., Ahn, J.H., Hong, B.H., and Iijima, S., Nature Nanotechnology, 2010, vol. 5, pp. 574–578. https://doi.org/10.1038/nnano.2010.132

    Article  CAS  PubMed  Google Scholar 

  8. Cao, X., Yin, Z., and Zhang, H., Energy Environ. Sci., 2014, vol. 7, pp. 1850–1865. https://doi.org/10.1039/C4EE00050A

    Article  CAS  Google Scholar 

  9. Lin, T., Chen, I.W., Liu, F., Yang, C., Bi, H., Xu, F., and Huang, F., Science, 2015, vol. 350, pp. 1508–1513. https://doi.org/10.1126/science.aab3798

    Article  CAS  PubMed  Google Scholar 

  10. Lv, W., Tang, D., He, Y., You, C., Shi, Z., Chen, X., Chen, C., Hou, P., Liu, C., and Yang, Q., ACS nano, 2009, vol. 3, pp. 3730–3736. https://doi.org/10.1021/nn900933u

    Article  CAS  PubMed  Google Scholar 

  11. Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, pp. 183–191. https://doi.org/10.1038/nmat1849

    Article  CAS  PubMed  Google Scholar 

  12. Rao, C.N.R., Sood, A.K., Subrahmanyam, K.S., and Govindaraj, A., Angew. Chem. Int. Ed., 2009, vol. 48, pp. 7752–7777. https://doi.org/10.1002/anie.200901678

    Article  CAS  Google Scholar 

  13. Pati, S.K., Enoki, T., and Rao, C.N.R., Graphene and Its Fascinating Attributes; Singapore: World Scientific, 2011. https://doi.org/10.1142/7989

    Book  Google Scholar 

  14. Bao, Q., Zhang, H., Yang, J., Wang, S., Tang, D. Y., Jose, R., Ramakrishna, S., Lim, C.T., and Loh, K.P., Adv. Funct. Mater., 2010, vol. 20, pp. 782–791. https://doi.org/10.1002/adfm.200901658

    Article  CAS  Google Scholar 

  15. Chitara, B., Panchakarla, L.S., Krupanidhi, S.B., and Rao, C.N.R., Adv. Mater., 2011, vol. 23, pp. 5419–5424. https://doi.org/10.1002/adma.201101414

    Article  CAS  PubMed  Google Scholar 

  16. .Kuzmenko, A.B., Heumen, E.V., Carbone, F., and Marel, D.V.D., Phys. Rev. Lett., 2008, vol. 100, pp. 117401–117404. https://doi.org/10.1103/PhysRevLett.100.117401

    Article  CAS  PubMed  Google Scholar 

  17. .Bonaccorso, F., Sun, Z., Hasan, T., and Ferrari, A.C., Nat. Photonics, 2010, vol. 4, pp. 611–622. https://doi.org/10.1038/nphoton.2010.186

    Article  CAS  Google Scholar 

  18. Furchi, M., Urich, A., Pospischil, A., Lilley, G., Unterrainer, K., Detz, H., Klang, P., Andrews, A.M., Schrenk, W., Strasser, G., and Mueller, T., Nano Lett., 2012, vol. 12, pp. 2773–2777. https://doi.org/10.1021/nl204512x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Echtermeyer, T.J., Britnell, L., Jasnos, P.K., Lombardo, A., Gorbachev, R.V., Grigorenko, A.N., Geim, A.K., Ferrari, A.C., and Novoselov, K.S., Nat. Commun., 2011, vol. 2, pp. 458–462. https://doi.org/10.1038/ncomms1464

    Article  CAS  PubMed  Google Scholar 

  20. Liu, M., Yin, X., Avila, E.U., Geng, B., Zentgraf, T., Ju, L., Wang, F., and Zhang, X., Nature, 2011, vol. 474, pp. 64–67. https://doi.org/10.1038/nature10067

    Article  CAS  PubMed  Google Scholar 

  21. Yan, H., Li, X., Chandra, B., Tulevski, G., Wu, Y., Freitag, M., Zhu, W., Avouris, P., and Xia, F., Nat. Nanotechnol., 2012, vol. 7, pp. 330–334. https://doi.org/10.1038/nnano.2012.59

    Article  CAS  PubMed  Google Scholar 

  22. Shi, Y., Fang, W., Zhang, K., Zhang, W., and Li, L.J., Small, 2009, vol. 5, pp. 2005–2011. https://doi.org/10.1002/smll.200900294

    Article  CAS  PubMed  Google Scholar 

  23. Bon, S.B., Valentini, L., Moustafa, R.M., Jradi, F.M., Kaafarani, B.R., Verdejo, R., Manchado, M.A.L., and Kenny, J.M., J. Phys. Chem. C, 2010, vol. 114, pp. 11252–11257. https://doi.org/10.1021/jp101518n

    Article  CAS  Google Scholar 

  24. Malig, J., Jux, N., Kiessling, D., Cid, J.J., Vazquez, P., Torres, T., and Guldi, D.M., Angew. Chem. Int. Ed., 2011, vol. 50, pp. 3561–3565. https://doi.org/10.1002/anie.201003364

    Article  CAS  Google Scholar 

  25. Noorden, R.V., Nature, 2012, vol. 483, pp. S32–S33. https://doi.org/10.1038/483S32a

    Article  CAS  Google Scholar 

  26. Akhavan, O., Carbon, 2010, vol. 48, pp. 509–519. https://doi.org/10.1016/j.carbon.2009.09.069

    Article  CAS  Google Scholar 

  27. Park, S., An, J., Potts, J.R., Velamakanni, A., Murali, S., and Ruoff, R.S., Carbon, 2011, vol. 49, pp. 3019–3023. https://doi.org/10.1016/j.carbon.2011.02.071

    Article  CAS  Google Scholar 

  28. Pei, S.F., Zhao, J.P., Du, J.H., Ren, W.C., and Cheng, H.M., Carbon, 2010, vol. 48, pp. 4466-4474. https://doi.org/10.1016/j.carbon.2010.08.006

    Article  CAS  Google Scholar 

  29. Macdiarmid, A.G., Mu, S.L., Somasiri, N.L.D., and Wu, W.Q., Molecular Crystals and Liquid Crystals, 1985, vol. 121, pp. 187–190. https://doi.org/10.1080/00268948508074859

    Article  CAS  Google Scholar 

  30. Macdiarmid, A.G., Chiang, J.C., Halpern, M., Huang, W.S., Mu, S.L., Nanaxakkara, L.D., Wu, S.W., and Yaniger, S.I., Molecular Crystals and Liquid Crystals, 1985, vol. 121, pp. 173–180. https://doi.org/10.1080/00268948508074857

    Article  CAS  Google Scholar 

  31. Macdiarmid, A.G., Chiang, J.C., Huang, W.S., Humphrey, B.D., and Somasiri, N.L.D., Molecular Crystals and Liquid Crystals, 1985, vol. 125, pp. 309–318. https://doi.org/10.1080/00268948508080110

    Article  CAS  Google Scholar 

  32. .Epstein, A.J., Ginder, J.M., Richter, A.F., and MacDiarmid, A.G., Conducting Polymers; Springer, Dordrecht, Switzerland, 1987. https://doi.org/10.1007/978-94-009-3907-3-10

  33. Sarker, A.K., Kim, J.H., Wee, B.H., Song, H.J., Lee, Y.K., Hong, J.D., and Lee, C.H., RSC Adv., 2015, vol. 5, pp. 52019–52025. https://doi.org/10.1039/C5RA07136D

    Article  CAS  Google Scholar 

  34. MacDiarmid, A.C., Yang, L.S., Huang, W.S., and Humphrey, B.D., Synthetic Metals, 1987, vol. 18, pp. 393–398. https://doi.org/10.1016/0379-6779(87)90911-8

    Article  CAS  Google Scholar 

  35. Shi, H.Y., Ye, Y.J., Liu, K., Song, Y., and Sun, X., Angew. Chem. Int. Ed., 2018, vol. 57, pp. 16359–16363. https://doi.org/10.1002/anie.201808886

    Article  CAS  Google Scholar 

  36. Kelly, F.M., Meunier, L., Cochrane, C., and Koncar, V., Displays, 2013, vol. 34, pp. 1–7. https://doi.org/10.1016/j.displa.2012.10.001

    Article  CAS  Google Scholar 

  37. Duek, E.A.R., Paoli, M.A.D., and Mastragostino, M., Advanced Materials, 1993, vol. 5, pp. 650–652. https://doi.org/10.1002/adma.19930050912

    Article  CAS  Google Scholar 

  38. Tarver, J., Yoo, J.E., and Loo, Y.L., Chem. Mater., 2010, vol. 22, pp. 2333–2340. https://doi.org/10.1021/cm903455w

    Article  CAS  Google Scholar 

  39. Jia, P., Argun, A.A., Xu, J., Xiong, S., Ma, J., Hammond, P.T., and Lu, X., Chem. Mater., 2009, vol. 21, pp. 4434–4441. https://doi.org/10.1021/cm9009817

    Article  CAS  Google Scholar 

  40. Bejbouji, H., Vignau, L., Miane, J.L., Dang, M.T., Oualim, E.M., Harmouchi, M., and Mouhsen, A., Solar Energy Materials and Solar Cells, 2010, vol. 94, pp. 176–181. https://doi.org/10.1016/j.solmat.2009.08.018

    Article  CAS  Google Scholar 

  41. Sonmezoglu, S., Tas, R., Akin, S., and Can, M., Appl. Phys. Lett., 2012, vol. 101, pp. 253301. https://doi.org/10.1063/1.4772019

    Article  CAS  Google Scholar 

  42. Luo, J., Huang, H.G., Zhang, H.P., Wu, L.K., Lin, Z.H., and Hepel, M., J. New Mat. Electrochem. Systems, 2000, vol. 3, pp. 249–252.

    CAS  Google Scholar 

  43. Maia, D.J., Neves, S.D., Alves, O.L., and Paoli, M.A.D., Electrochimica Acta, 1999, vol. 44, pp. 1945–1952. https://doi.org/10.1016/S0013-4686(98)00303-X

    Article  CAS  Google Scholar 

  44. Chatterjee, S., Layek, R.K., and Nandi, A.K., Carbon, 2013, vol. 52, pp. 509–519. https://doi.org/10.1016/j.carbon.2012.10.003

    Article  CAS  Google Scholar 

  45. Li, Y., Zhao, X., Xu, Q., Zhang, Q., and Chen, D., Langmuir, 2011, vol. 27, pp. 6458–6463. https://doi.org/10.1021/la2003063

    Article  CAS  PubMed  Google Scholar 

  46. Hyder, M.N., Lee, S.W., Cebeci, F.C., Schmidt, D.J., Horn, Y.S., and Hammond, P.T., ACS Nano, 2011, vol. 5, pp. 8552–8561. https://doi.org/10.1021/nn2029617

    Article  CAS  PubMed  Google Scholar 

  47. Lee, T.M., Min, S.H., Gu, M., Jung, Y.K., Lee, W., Lee, J.U., Seong, D.G., and Kim, B.S., Chem. Mater., 2015, vol. 27, pp. 3785–3796. https://doi.org/10.1021/acs.chemmater.5b00491

    Article  CAS  Google Scholar 

  48. Sarker, A.K. and Hong, J.D., Langmuir, 2012, vol. 28, pp. 12637–12646. https://doi.org/10.1021/la3021589

    Article  CAS  PubMed  Google Scholar 

  49. Ozcam, A.E., menko, K.E., Jaye, C., Spontak, R.J., Fischer, D.A., and Genzer, J., J. Electron. Spectrosc. Relat. Phenom., 2009, vol. 172, pp. 95–103. https://doi.org/10.1016/j.elspec.2009.03.012

    Article  CAS  Google Scholar 

  50. Decher, G., Hong, J.D., and Schmitt, J., Thin Solid Films, 1992, vol. 210/211, pp. 831–835. https://doi.org/10.1016/0040-6090(92)90417-A

    Article  Google Scholar 

  51. Smits, F.M., Bell Sys. Tech. J., 1958, vol. 37, pp. 711–718. https://doi.org/10.1002/j.1538-7305.1958.tb03883.x

    Article  Google Scholar 

  52. Li, D., Muller, M.B., Gilje, S., Kaner, R.B., and Wallace, C.G., Nat. Nanotechnol., 2008, vol. 3, pp. 101–105. https://doi.org/10.1038/nnano.2007.451

    Article  CAS  PubMed  Google Scholar 

  53. Saxena, S., Tyson, T.A., Shukla, S., Negusse, E., Chen, H.Y., and Bai, J.M., Appl. Phys. Lett., 2011, vol. 99, pp. 013104–013107. https://doi.org/10.1063/1.3607305

    Article  CAS  Google Scholar 

  54. Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y.Y., Wu, Y., Nguyen, A.T., and Ruoff, R.S., Carbon, 2007, vol. 45, pp. 1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  55. Yang, D.X., Velamakanni, A., Bozoklu, G., Park, S.J., Stoller, M., Piner, R.D., Stankovich, S., Jung, I.H., Field, D.A., Ventrice Jr., C.A., and Ruoff, R.S., Carbon, 2009, vol. 47, pp. 145–152. https://doi.org/10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  56. Zhao, B., Liu, P., Jiang, Y., Pan, D., Tao, H., Song, J., Fang, T., and Xu, W., J. Power Sources, 2012, vol. 198, pp. 423–427. https://doi.org/10.1016/j.jpowsour.2011.09.074

    Article  CAS  Google Scholar 

  57. Wang, D.R. and Wang, X.G., Langmuir, 2011, vol. 27, pp. 2007–2013. https://doi.org/10.1021/la1044128

    Article  CAS  PubMed  Google Scholar 

  58. Cote, L.J., Kim, F., and Huang, J.X., J. Am. Chem. Soc., 2009, vol. 131, pp. 1043–1049. https://doi.org/10.1021/ja806262m

    Article  CAS  PubMed  Google Scholar 

  59. Huang, S., Ren, L.L., Guo, J., Zhu, H., Zhang, C., and Liu, T.X., Carbon, 2012, vol. 50, pp. 216–224. https://doi.org/10.1016/j.carbon.2011.08.038

    Article  CAS  Google Scholar 

  60. Hu, L.F., Brewster, M.M., Xu, X., Tang, C.C., Gradecak, S., and Fang, X.S., Nano Lett., 2013, vol. 13, pp. 1941–1947. https://doi.org/10.1021/nl3046552

    Article  CAS  PubMed  Google Scholar 

  61. Tan, S., Zhai, J., Xue, B., Wan, M., Meng, Q., Li, Y., Jiang, L., and Zhu, D., Langmuir, 2004, vol. 20, pp. 2934–2937. https://doi.org/10.1021/la036260m

    Article  CAS  PubMed  Google Scholar 

  62. Karaoglan, N. and Bindal, C., Engineering Science and Technology, an International Journal, 2018, vol. 21, pp. 1152–1158. https://doi.org/10.1016/j.jestch.2018.09.010

    Article  Google Scholar 

  63. Liang, H.F., Ren, W., Su, J. H., and Cai, C.L., Thin Solid Films, 2012, vol. 521, pp. 163–167. https://doi.org/10.1016/j.tsf.2011.12.086

    Article  CAS  Google Scholar 

  64. Manga, K.K., Zhou, Y., Yan, Y., and Loh, K.P., Adv. Funct. Mater., 2009, vol. 19, pp. 3638–3643. https://doi.org/10.1002/adfm.200900891

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to thank Professor Jong Dal Hong, Department of Chemistry, Incheon National University, South Korea for his support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashis K. Sarker.

Ethics declarations

The authors declare that there is not conflict of interest.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, M., Sarker, A.K. Multilayer Engineering of Polyaniline and Reduced Graphene Oxide Thin Films on a Plastic Substrate for Flexible Optoelectronic Applications Using NIR. Russ J Appl Chem 93, 1561–1570 (2020). https://doi.org/10.1134/S1070427220100110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220100110

Keywords:

Navigation