Skip to main content
Log in

Features of the Isobutane Alkylation with Butylenes on Zeolite Catalysts

  • Organic Synthesis and Industrial Organic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

Isobutane alkylation with olefins is an important process to produce a high-octane component of gasoline (alkylate) obtained using mineral acids as catalysts. Solid catalysts based on zeolites are a promising alternative to acids, but their rapid deactivation makes it difficult to implement the technology on an industrial scale. In this work, we investigated the CaLaHPtX catalyst based on molded NaX zeoliste. Physicochemical analysis of the catalyst (the residual concentration of Na2O is less than 1 wt %, acidity 1452 μmol of NH3/g, and IR-Fourier spectroscopy data with the presence of bridging OH-groups at aluminum atoms with absorption bands at 3657 and 3603 cm–1) suggest good catalytic properties. Alkylation of isobutane with butylenes was carried out on a pilot plant according to a new principle - in a “structured” mode, which guarantees a high isobutane/butylenes ratio in the reaction zone. Under these conditions, the catalyst operates for at least 24 h with stable performance (butylenes conversion – 97.1 wt %, alkylate yield – 94.1 wt %, selectivity to trimethylpentanes – 76.4 wt %). It was shown that before the catalyst is regenerated, it is necessary to stop the reaction before its activity begins to decrease in order to exclude the accumulation of hard-to-desorb deposits on its surface. The combination of alkylation in the “structured” mode and the CaLaHPtX catalyst promote a long-term reaction without reducing the quality of the alkylate for at least 5 cycles of reaction - reductive regeneration - reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Hsu, C.S. and Robinson, P.R., Handbook of Petroleum Technology, Cham: Springer International Publishing, 2017.

    Book  Google Scholar 

  2. Vogt, E.T.C., Whiting, G.T., Chowdhury, A.D., and Weckhuysen, B.M., Adv. Catal., 2015, vol. 58, pp. 143–314. https://doi.org/10.1016/bs.acat.2015.10.001

    Article  CAS  Google Scholar 

  3. Aschauer, S., Schilder, L., Korth, W., Fritschi, S., and Jess, A., Catal. Lett., 2019, vol. 141, no. 10, pp. 1405–1419. https://doi.org/10.1007/s10562-011-0675-2

    Article  CAS  Google Scholar 

  4. Chen, Z., Gao, F., Ren, K., Wu, Q., Luo, Y., Zhou, h., Zhang, M., and Xu, Q., RSC Adv., 2018, vol. 8, no. 7, pp. 3392–3398. https://doi.org/10.1039/C7RA12629H

    Article  CAS  Google Scholar 

  5. Zhang, h., Xu, J., Tang, h., Yang, Z., Liu, R., and Zhang, S., Ind. Eng. Chem. Res., 2019, vol. 58, no. 22, pp. 9690–9700. https://doi.org/10.1021/acs.iecr.9b01638

    Article  CAS  Google Scholar 

  6. Liu, C., Van Santen, R.A., Poursaeidesfahani, A., Vlugt, T.J.H., Pidko, E.A., and Hensen, E.J.M., ACS Catal., 2017, vol. 7, no. 12, pp. 8613–8627. https://doi.org/10.1021/acscatal.7b02877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sekine, Y., Tajima, Y.I., Ichikawa, Y.S., Matsukata, M., and Kikuchi, E., J. Japan Pet. Inst., 2012, vol. 55, no. 5, pp. 308–318. https://doi.org/10.1627/jpi.55.308

    Article  CAS  Google Scholar 

  8. Feller, A., J. Catal., 2003, vol. 220, no. 1, pp. 192–206. https://doi.org/10.1016/S0021-9517(03)00251-3

    Article  CAS  Google Scholar 

  9. Cerqueira, H.S., Ayrault, P., Datka, J., and Guisnet, M., Microporous Mesoporous Mater., 2000, vol. 38, no. 2-3, pp. 197–205. https://doi.org/10.1016/S1387-1811(99)00304-2

    Article  CAS  Google Scholar 

  10. Sievers, C., Zuaza, I., Guzman, A., Olindo, R., Syska, Y., and Lercher, J., J. Catal., 2007, vol. 246, no. 2, pp. 315–324. https://doi.org/10.1016/j.jcat.2006.11.015

    Article  CAS  Google Scholar 

  11. Corma, A., Gómez, V., and Martínez, A., Appl. Catal. A Gen., 1994, vol. 114, no. 1, pp. 83–96. https://doi.org/10.1016/0926-860X(94)85026-7

    Article  Google Scholar 

  12. Guzman, A., Zuazo, I., Feller, A., Olindo, R., Sievers, C., and Lercher, J.A., Micropor. Mesopor. Mater., 2005, vol. 83, no. 1–3, pp. 309–318. https://doi.org/10.1016/j.micromeso.2005.04.024

    Article  CAS  Google Scholar 

  13. Schüßler, F., Schallmoser, S., Shi, H., Haller, G.L., Ember, E., and Lercher, J.A., ACS Catal., 2014, vol. 4, no. 6, pp. 1743–1752. https://doi.org/10.1021/cs500200k

    Article  CAS  Google Scholar 

  14. Ro, Y., Gim, M.Y., Lee, J.W., Lee, E.J., and Song, I.K., J. Nanosci. Nanotechnol., 2018, vol. 18, no. 9, pp. 6547–6551. https://doi.org/10.1166/jnn.2018.15665

    Article  CAS  PubMed  Google Scholar 

  15. Bogdan, V.I., and Kazanskii, V.B., Kinet. Catal., 2005, vol. 46, no. 6, pp. 834–838. https://doi.org/10.1007/s10975-005-0144-2

    Article  CAS  Google Scholar 

  16. Guisnet, M., Pinard, L., Guidotti, M., and Zaccheria, F., Pure Appl. Chem., 2012, vol. 84, no. 3, pp. 509–527. https://doi.org/10.1351/PAC-CON-11-07-09

    Article  CAS  Google Scholar 

  17. Weitkamp, J. and Traa, Y., Catal. Today., 1999, vol. 49, nos. 1–3, pp. 193–199. https://doi.org/10.1016/S0920-5861(98)00424-6

    Article  CAS  Google Scholar 

  18. Huang, Q., Zhao, G., Zhang, S., and Yang, F., Ind. Eng. Chem. Res., 2005, vol. 54, no. 5, pp. 1464–1469. https://doi.org/10.1021/ie504163h

    Article  CAS  Google Scholar 

  19. Flego, C., Kiricsi, I., Parker, W.O., and Clerici, M.G., Appl. Catal. A, Gen., 1995, vol. 124, no. 1, pp. 107–119. https://doi.org/10.1016/0926-860X(94)00268-1

    Article  CAS  Google Scholar 

  20. Shiriyazdanov, R.R., Akhmetov, S.A., Rysaev, U.Sh., Nikolaev, E.A., Turanov, A.P., and Morozov, Yu.V., Petrol. Chem., 2009, vol. 49, no. 1, pp. 86-89. https://doi.org/10.1134/S0965544109010150

    Article  Google Scholar 

  21. Gerzeliev, I.M., Tsodikov, M.V., and Khadzhiev, S.N., Petrol. Chem., 2009, vol. 49, no. 1, pp. 1-6. https://doi.org/10.1134/S0965544109010010

    Article  Google Scholar 

  22. Patent RU 2637922, Publ. 2017.

  23. Gerzeliev, I.M., Temnikova, V.A., Saitov, Z.A., Asylbaev, and D.F., Baskhanova, M.N., Petrol. Chem., 2020, vol. 60, no. 10, pp. 1170–1175. https://doi.org/10.1134/S0965544120100035

    Article  CAS  Google Scholar 

  24. Patent RU 2445164, Publ. 2012.

  25. Gerzeliev, I.M., Temnikova, V.A., Baskhanova, M.N., and Maksimov, A.L., Petrol. Chem., 2019, vol. 59, no. 11, pp. 1213–1219. https://doi.org/10.1134/S0965544119110021

    Article  CAS  Google Scholar 

  26. Treacy, M.M.J. and Higgins, J.B., Collection of Simulated XRD Powder Patterns for Zeolites, 5th ed., Amsterdam: Elsevier, 2007.

    Google Scholar 

  27. Sievers, C., Liebert, J.S., Stratmann, M.M., Olindo, R., and Lercher, J.A., Appl. Catal. A Gen., 2008, vol. 336, no. 1-2, pp. 89–100. https://doi.org/10.1016/j.apcata.2007.09.039

    Article  CAS  Google Scholar 

  28. Khadzhiev, S.N., Gerzeliev, I.M., Saitov, Z.A., Baskhanova, M.N., Oknina, N.V., Vedernikov, O.S., Kleymenov, A.V., Kondrashev, D.O., and Kuznetsov, S.E., Catal. Ind., 2017, vol. 9, no. 3, pp. 198-203. https://doi.org/10.1134/S2070050417030059

    Article  Google Scholar 

  29. Feller, A., Guzman, A., Zuazo, I., and Lercher, J.A., J. Catal., 2004, vol. 224, no. 1, pp. 80–93. https://doi.org/10.1016/j.jcat.2004.02.019

    Article  CAS  Google Scholar 

  30. Rørvik, T., Mostad, h., Ellestad, O.H., and Stöcker, M., Appl. Catal. A Gen., 1996, vol. 137, no. 2, pp. 235–253. https://doi.org/10.1016/0926-860X(95)00282-0

    Article  Google Scholar 

  31. Schüßler, F., Pidko, E.A., Kolvenbach, R., Sievers, C., Hensen, E.J.M., Van Santen, R.A., and Lercher, J.A., J. Phys. Chem., 2011, vol. 115, no. 44, pp. 21763–21776. https://doi.org/10.1021/jp205771e

    Article  CAS  Google Scholar 

  32. Hughes, R., Deactivation of Catalysts, London: Academic Press, Inc., 1984.

    Google Scholar 

  33. Klingmann, R., Josl, R., Traa, Y., Gläser, R., and Weitkamp, J., Appl. Catal. A, 2005, vol. 281, no. 1–2, pp. 215–223. https://doi.org/10.1016/j.apcata.2004.11.032

    Article  CAS  Google Scholar 

  34. Josl, R., Catal. Commun., 2004, vol. 5, no. 5, pp. 239–241. https://doi.org/10.1016/j.catcom.2004.02.005

    Article  CAS  Google Scholar 

  35. Gerzeliev, I.M., Temnikova, V.A., Maksimov, A.L., and Khadzhiev, S.N., Petrol. Chem., 2018, vol. 58, no. 10, pp. 827–832. https://doi.org/10.1134/S0965544118100067

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors of the work express their gratitude to the staff of the TIPS RAS, chief researcher Professor G. Bondarenko for help in obtaining and processing data on IR spectroscopy.

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant agreement no. 075-15-2019-1848, unique project identifier RFMEFI60419X0246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. Gerzeliev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gerzeliev, I.M., Temnikova, V.A., Saitov, Z.A. et al. Features of the Isobutane Alkylation with Butylenes on Zeolite Catalysts. Russ J Appl Chem 93, 1586–1595 (2020). https://doi.org/10.1134/S107042722010146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S107042722010146

Keywords:

Navigation