Skip to main content
Log in

Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The nitrated compounds 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT), and pentaerythritol tetranitrate (PETN) are toxic xenobiotics widely used in various industries. They often coexist as environmental contaminants. The aims of this study were to evaluate the transformation of 100 mg L−1 of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109c and identify enzymes that may participate in the transformation. These strains were selected from 34 TNT transforming bacteria. Cupriavidus metallidurans DNT was used as a reference strain for comparison purposes. Strains DNT, M30b and M109c transformed 2,4-DNT (100%), TNT (100, 94.7 and 63.6%, respectively), and PETN (72.7, 69.3 and 90.7%, respectively). However, the presence of TNT negatively affects 2,4-DNT and PETN transformation (inhibition > 40%) in strains DNT and M109c and fully inhibited (100% inhibition) 2,4-DNT transformation in R. planticola M30b.

Genomes of R. planticola M30b and R. radiobacter M109c were sequenced to identify genes related with 2,4-DNT, TNT or PETN transformation. None of the tested strains presented DNT oxygenase, which has been previously reported in the transformation of 2,4-DNT. Thus, unidentified novel enzymes in these strains are involved in 2,4-DNT transformation. Genes encoding enzymes homologous to the previously reported TNT and PETN-transforming enzymes were identified in both genomes. R. planticola M30b have homologous genes of PETN reductase and xenobiotic reductase B, while R. radiobacter M109c have homologous genes to GTN reductase and PnrA nitroreductase. The ability of these strains to transform explosive mixtures has a potentially biotechnological application in the bioremediation of contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All relevant data appear in the article and its Supporting Information files. The raw data of the transformation experiments appear in the Online Resource file “Raw data.xlsx”. Strains R. planticola M30b and R. radiobacter M109c are available in the bacteria collection of the Microbiology Department of the School of Science at Pontificia Universidad Javeriana (CMPUJ, Bogota, Colombia) under codes CMPUJ470 and CMPUJ471, respectively. CMPUJ collection are register in World Federation for Culture Collections. The genome sequences of strains R. planticola M30b and R. radiobacter M109c are deposited in the GeneBank database under accession Nos. GCA_006757685.1 and GCA_006757705.1, respectively. Sequences of the fosmids M30b_B4 and M109c_G12 are deposited in the GeneBank database under accession Nos. MT009031 and MT009032, respectively.

References

  • Agrawal J, Hodgson R (2007) Synthetic routes to nitrate esters. In: Agrawal J, Hodgson R (eds) Organic Chemistry of Explosives, 1st edn. Wiley, England, pp 87–124

    Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data [cited 2019 Jan 15]. Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

  • Arbeli Z, Garcia-Bonilla E, Pardo C, Peña L, Ramos E, Velásquez T et al (2016) Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures. Environ Sci Pollut Res Int 23:9144–9155

    Article  CAS  PubMed  Google Scholar 

  • Avila-Arias H, Avellaneda H, Garzón V, Rodríguez G, Arbeli Z, Garcia-Bonilla E, Villegas-Plazas S, Roldan F (2017) Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria. J Appl Microbiol 123:401–413

    Article  CAS  PubMed  Google Scholar 

  • Aziz R, Bartels D, Best A, DeJongh M, Disz T, Edwards R, Formsma K, Gerdes S, Glass E, Kubal M, Meyer F, Olsen G, Olson R, Osterman A, Overbeek R, McNeil L, Paarmann D, Paczian T, Parrello B, Pusch G, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC genomics 9:75

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Binks P, French C, Nicklin S, Bruce N (1996) Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol 62:1214–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolger A, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caballero A, Lázaro J, Ramos J, Esteve-Núñez A (2005) PnrA, a new nitroreductase-family enzyme in the TNT-degrading strain Pseudomonas putida JLR11. Environ Microbiol 7(8):1211–1219

    Article  CAS  PubMed  Google Scholar 

  • Claus H, Perret N, Bausinger T, Fels G, Preu J, Konig H (2007) TNT transformation products are affected by the growth conditions of Raoultella terrigena. Biotechnol Lett 29:411–419

    Article  CAS  PubMed  Google Scholar 

  • Duarte M, Jauregui R, Vilchez-Vargas R, Junca H, Pieper D (2014) AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. Database 2014:1–12

    Article  CAS  Google Scholar 

  • Ebert S, Fischer P, Knackmuss H (2001) Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation 12:367–376

    Article  CAS  PubMed  Google Scholar 

  • EPA (2006) Method 8330B (SW-846): Nitroaromatics, nitramines, and nitrate esters by high performance liquid chromatography (HPLC), United States, pp 1–31

  • EPA (2010) Provisional Peer-Reviewed Toxicity Values for Pentaerythritol tetranitrate (PETN), United States pp.1–22. EPA/690/R-10/021F

  • EPA (2014) Technical fact sheet – 2,4,6-Trinitrotoluene (TNT), United States pp.1–8. EPA 505-F-14–009 Office of Solid Waste and Emergency Response

  • EPA (2017) Technical fact sheet – Dinitrotoluenes (DNT), United States pp.1–8. EPA 505-F-17–010 Office of Land and Emergency Management

  • Esteve-Núñez A, Caballero A, Ramos J (2001) Biological degradation of 2,4,6-trinitrotoluene. Microbiol Mol Biol Rev 65:335–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández M, Duque E, Pizarro-Tobías P, van Dillewijn P, Wittich R, Ramos J (2009) Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2(2):287–294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fida T, Palamuru S, Pandey G, Spain J (2014) Aerobic biodegradation of 2,4-dinitroanisole by Nocardioides sp. strain JS1661. Appl Environ Microbiol 80(24):7725–7731

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • French C, Nicklin S, Bruce N (1998) Aerobic degradation of 2,4,6-trinitrotoluene by Enterobacter cloacae PB2 and by pentaerythritol tetranitrate reductase. Appl Environ Microbiol 64(8):2864–2868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • George S, Huggins-Clark G, Brooks L (2001) Use of a Salmonella microsuspension bioassay to detect the mutagenicity of munitions compounds at low concentrations. Mutat Res 490(1):45–56

    Article  CAS  PubMed  Google Scholar 

  • Gorecki S, Nesslany F, Hubé D, Mullot J, Vasseur P, Marchioni E et al (2017) Human health risks related to the consumption of foodstuffs of plant and animal origin produced on a site polluted by chemical munitions of the First World War. Sci Total Environ 599–600:314–323

    Article  PubMed  CAS  Google Scholar 

  • Gumuscu B, Tekinay T (2013) Effective biodegradation of 2,4,6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil. Int Biodeterior Biodegradation 85:35–41

    Article  CAS  Google Scholar 

  • HaÏdour A, Ramos J (1996) Identification of products resulting from the biological reduction of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene by Pseudomonas sp. Environ Sci Technol 30:2365–2370

    Article  Google Scholar 

  • Han S (2008) In situ bioremediation and natural attenuation of dinitrotoluenes and trinitrotoluene Dissertarion Georgia Institute of Technology, Atlanta

  • Hudcova T, Halecky M, Kozliak E, Stiborova M, Paca J (2011) Aerobic degradation of 2,4-dinitrotoluene by individual bacterial strains and defined mixed population in submerged cultures. J Hazard Mater 192(2):605–613

    Article  CAS  PubMed  Google Scholar 

  • Husserl J (2011) Biodegradation of nitroglycerin as a growth substrate: A basis for natural attenuation and bioremediation. Dissertation, Georgia Institute of Technology, Atlanta

  • Jackson R, Rylott E, Fournier D, Hawari J, Bruce N (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104:16822–16827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson G, Jain R, Spain J (2002) Origins of the 2,4-dinitrotoluene pathway. J Bacteriol 184:4219–4232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan M, Lee J, Park J (2013) A toxicological review on potential microbial degradation intermediates of 2,4,6-trinitrotoluene, and its implications in bioremediation. KSCE Journal of Civil Engineering 17(6):1223–1231

    Article  Google Scholar 

  • Khan M, Lee J, Yoo K, Kim S, Park J (2015) Improved TNT detoxification by starch addition in a nitrogen-fixing Methylophilus-dominant aerobic microbial consortium. J Hazard Mater 300:873–881

    Article  CAS  PubMed  Google Scholar 

  • Küce P, Coral G, Kantar Ç (2015) Biodegradation of 2,4-dinitrotoluene (DNT) by Arthrobacter sp. K1 isolated from a crude oil contaminated soil. Ann Microbiol 65(1):467–476

    Article  CAS  Google Scholar 

  • Kundu D, Hazra C, Chaudhari A (2015) Biodegradation of 2,4-dinitrotoluene with Rhodococcus pyridinivorans NT2: characteristics, kinetic modeling, physiological responses and metabolic pathway. RSC Advances 5(49):38818–38829

    Article  CAS  Google Scholar 

  • Labidi M, Ahmad D, Halasz A, Hawari J (2001) Biotransformation and partial mineralization of the explosive 2,4,6-trinitrotoluene (TNT) by rhizobia. Can J Microbiol 47:559–566

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. GigaScience 1(1):1–18

    Article  Google Scholar 

  • Martin J, Comfort S, Shea P, Kokjohn T, Drijbe R (1997) Denitration of 2,4,6-trinitrotoluene by Pseudomonas savastanoi. Can J Microbiol 43:447–455

    Article  CAS  PubMed  Google Scholar 

  • Muter O, Potapova K, Limane B, Sproge K, Jakobsone I, Cepurnieks G, Bartkevics V (2012) The role of nutrients in the biodegradation of 2,4,6-trinitrotoluene in liquid and soil. J Environ Manage 98:51–55

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Paoli G, Spain J (2000) Aerobic degradation of dinitrotoluenes and pathway for bacterial degradation of 2,6-dinitrotoluene. Appl Environ Microbiol 66:2139–2147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Overbeek R, Olson R, Pusch G, Olsen G, Davis J, Disz T et al (2014) The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res 42:D206-214

    Article  CAS  PubMed  Google Scholar 

  • Parales R, Spain J, Jhonson G (2005) Bacterial degradation of DNT and TNT mixtures. Davis (CA): University of California, Georgia Institute of Technology, Air Force; Proyect No.: CU1212. Sponsored by Strategic Environmental Research & Development Program

  • Phelan J, Web S (2002) Chemical sensing for buried landmines - fundamental processes influencing trace chemical detection. Mine detection dogs training, operations and odor detection. Geneva international center for humanitarian demining, Geneva, pp 209–286

    Google Scholar 

  • Rice E, Baird R, Eaton A, Clesceri L (2012) 4500-NO2-. In: Rice E (ed) Standard methods for the examination of water and wastewater, 22nd edn. APHA, Washington, DC

    Google Scholar 

  • Riefler R, Smets B (2002) NAD(P)H:flavin mononucleotide oxidoreductase inactivation during 2,4,6-trinitrotoluene reduction. Appl Environ Microbiol 68:1690–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabbioni G, Rumler R (2007) Biomonitoring of workers cleaning up ammunition waste sites. Biomarkers 12(6):559–573

    Article  CAS  PubMed  Google Scholar 

  • Sagi-Ben Moshe S, Ronen Z, Dahan O, Weisbrod N, Groisman L, Adar E, Nativ R (2009) Sequential biodegradation of TNT, RDX and HMX in a mixture. Environ Pollut 157:2231–2238

    Article  CAS  PubMed  Google Scholar 

  • Sanjust E, Rinaldi A, Rescigno A, Porcu M, Alberti G, Rinaldi A, Finazzi-Agro A (1995) A hydroxyquinone with amine oxidase activity: preparation and properties. Biochem Biophys Res Commun 208:825–834

    Article  CAS  PubMed  Google Scholar 

  • Seemann T (2017) Shovill: Faster SPAdes assembly of Illumina reads [cited 2019 Jan 15]. Available from: https://github.com/tseemann/shovill

  • Shemer B, Yagur-Kroll S, Hazan C, Belkin S (2018) Aerobic transformation of 2,4-dinitrotoluene by Escherichia coli and its implications for the detection of trace explosives. Appl Environ Microbiol 84(4):e01729-e11717

    Article  PubMed  PubMed Central  Google Scholar 

  • Snape J, Walkley N, Morby A, Nicklin S, White G (1997) Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter. J Bacteriol 179(24):7796–7802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snellinx Z, Taghavi S, Vangronsveld J, Van der Lelie D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: Isolation and characterisation. Biodegradation 14(1):19–29

    Article  CAS  PubMed  Google Scholar 

  • Spanggord R, Mortelmans K, Griffin A, Simmon V (1982) Mutagenicity in Salmonella typhimurium and structure-activity relationships of wastewater components emanating from the manufacture of trinitrotoluene. Environ Mutagen 4(2):163–179

    Article  CAS  PubMed  Google Scholar 

  • Spanggord R, Spain J, Nishino S, Mortelmans K (1991) Biodegradation of 2,4-dinitrotoluene by a Pseudomonas sp. Appl Environ Microbiol 57:3200–3205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stenuit B, Agathos S (2010) Microbial 2,4,6-trinitrotoluene degradation: could we learn from (bio)chemistry for bioremediation and vice versa? Appl Microbiol Biotechnol 88:1043–1064

    Article  CAS  PubMed  Google Scholar 

  • Stenuit B, Agathos S (2011) Biodegradation and bioremediation of TNT and other nitro explosives. In: Murray M (ed) Comprehensive Biotechnology, 2nd edn. Academic Press, Burlington, VT, pp 167–181

    Chapter  Google Scholar 

  • Suen W, Spain J (1993) Cloning and characterization of Pseudomonas sp. strain DNT genes for 2,4-dinitrotoluene degradation. J Bacteriol 175(6):1831–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thijs S, Van Hamme J, Gkorezis P, Rineau F, Weyens N, Vangronsveld J (2014) Draft genome sequence of Raoultella ornithinolytica TNT, a trinitrotoluene-denitrating and plant growth-promoting strain isolated from explosive-contaminated soil. Genome Announc 2(3):e00491-e1414

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Dillewijn P, Wittich R, Caballero A, Ramos J (2008) Type II hydride transferases from different microorganisms yield nitrite and diarylamines from polynitroaromatic compounds. Appl Environ Microbiol 74:6820–6823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White G, Snape J, Nicklin S (1996) Biodegradation of glycerol trinitrate and pentaerythritol tetranitrate by Agrobacterium radiobacter. Appl Environ Microbiol 62(2):637–642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams R, Rathbone D, Scrutton N, Bruce N (2004) Biotransformation of explosives by the old yellow enzyme family of flavoproteins. Appl Environ Microbiol 70(6):3566–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittich R, Haïdour A, Van Dillewijn P, Ramos J (2008) OYE flavoprotein reductases initiate the condensation of TNT-derived intermediates to secondary diarylamines and nitrite. Environ Sci Technol 42:734–739

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y, Wu J, Liu H, Wang S, Liu S, Zhou N (2006) Characterization of genes involved in the initial reactions of 4-chloronitrobenzene degradation in Pseudomonas putida ZWL73. Appl Microbiol Biotechnol 73(1):166–171

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Hughes J, Nishino S, Spain J (2000) Slurry-phase biological treatment of 2,4-dinitrotoluene and 2,6-dinitrotoluene: role of bioaugmentation and effects of high dinitrotoluene concentrations. Environ Sci Technol 34:2810–2816

    Article  CAS  Google Scholar 

  • Zhang M, Liu G, Song K, Wang Z, Zhao Q, Li S, Ye Z (2015) Biological treatment of 2,4,6-trinitrotoluene (TNT) red water by immobilized anaerobic–aerobic microbial filters. Chem Eng J 259:876–884

    Article  CAS  Google Scholar 

  • Zhuang L (2007) Remediation of pentaerythritol tetranitrate (PETN) contaminated water and soil. Dissertation. Earth Sciences, University of Waterloo. Ontario, Canada

  • Zhuang L, Gui L, Gillham R (2012) Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortia from a contaminated site. Chemosphere 89:810–816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jim Spain for providing the reference strain and Drs. Johanna Husserl and Howard Junca for contributing their knowledge and advice towards the development of this study.

Funding

This work was funded by INDUMIL (Colombian Military Industry—https://www.indumil.gov.co/). Colciencias (Colombian Innovation Agency—https://minciencias.gov.co/) awarded Hernan Avellaneda "Convocatoria 727 de 2015". The funders had no role in study design, data collection and analysis, decision to publish, or manuscript preparation. Soil sampling was approved by the Colombian National Authority of Environmental Licenses (Autoridad Nacional de Licencias Ambientales—ANLA) under Scientific Research Permit on Biodiversity No. 545 dated September 18, 2009 and amended by Resolution No. 450 dated May 15, 2013.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Hernán Avellaneda. The first draft of the manuscript was written by Hernán Avellaneda and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fabio Roldan.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Ethical approval

Pontificia Universidad Javeriana ethics committee approved the present study in session held on April 11th.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (xlsx 31 KB)

Supplementary file2 (pdf 323 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avellaneda, H., Arbeli, Z., Teran, W. et al. Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes. World J Microbiol Biotechnol 36, 190 (2020). https://doi.org/10.1007/s11274-020-02962-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02962-8

Keywords

Navigation