Skip to main content
Log in

Laboratory Adsorption Studies on Cadmium (II) by Nonwoven Chitosan/Phosphorylated Microcellulose Nanocomposite

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The rapid growth of human population and global industrialization has resulted in the generation of larger amounts of wastewater containing various pollutants, among which toxic heavy metals. Adsorption is efficient for this purpose, but its application is limited by the high cost of adsorbent materials. Chitosan (CS) and phosphorylated microcellulose (PMC) have a high potential as low-cost and effective adsorbents for water remediation. Nonwoven CS/PMC nanocomposite fiber mats were produced by electrospinning with up to 50% by weight of PMC. The thermal, chemical, and morphological properties of the mats were studied. Batch adsorption trials were carried out using Cd2+ ions. Kinetics and isotherm models were tested against experimental results and the thermodynamic properties were calculated. Results showed that the pseudo-second order model best fitted experimental data and suggested chemisorption as the mechanism for Cd2+ removal. Langmuir isotherm best described equilibrium data reaching the maximum adsorption capacity of 283 mg/g at 60 °C. This high value was attributed mainly to the large amount of phosphate groups, which require less energy to capture the metal cations. Thermodynamic evaluation suggested that the adsorption is a spontaneous endothermic reaction. These results confirm that CS/PMC mats are easy to produce, and provide high adsorption capacity in simulated wastewater containing Cd2+. These laboratory-based adsorption experiments will assist in selecting/ranking of potential candidate matrices, and scale-up development of technologies for complex wastewater applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdolali, A., Ngo, H. H., Guo, H. S., Lee, D. J., Tung, K. L., & Wang, X. C. (2014). Development and evaluation of a new multi-metal binding biosorbent. Bioresource Technology, 160, 98–106.

    CAS  Google Scholar 

  • Adeleye, A. S., Conway, J. R., Garner, K., Huang, Y., Su, Y., & Keller, A. A. (2016). Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chemical Engineering Journal, 286, 640–662.

    CAS  Google Scholar 

  • Aliabadi, M., Irani, M., Ismaeili, J., Piri, H., & Parnian, M. J. (2013). Electrospun nanofiber membrane of PEO/chitosan for the adsorption of nickel, cadmium, lead and copper ions from aqueous solution. The Chemical Engineering Journal, 220, 237–243.

    CAS  Google Scholar 

  • Bergeron, C., Perrier, E., Potier, A., & Delmas, G. (2012). A study of the deformation, network, and aging of polyethylene oxide films by infrared spectroscopy and calorimetric measurements. International Journal of Spectroscopy, 2012, 1–13.

    Google Scholar 

  • Bilal, M., Shah, J. A., Ashfak, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., & Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater - a review. Journal of Hazardous Materials, 263, 322–333.

    CAS  Google Scholar 

  • Brandes, R., Belosinschi, D., Brouillette, F., & Chabot, B. (2019). A new electrospun chitosan/phosphorylated nanocellulose biosorbent for the removal of cadmium ions from aqueous solutions. Journal of Environmental Chemical Engineering, 7(6), 103477.

    CAS  Google Scholar 

  • Carpenter, A. W., Lannoy, C., & Wiesner, M. R. (2015). Cellulose nanomaterials in water treatment technologies. Environmental Science & Technology, 49(9), 5277–5287.

    CAS  Google Scholar 

  • Chen, X., He, H., & Chen, G. (2020). Effects of biochar and crop straws on the bioavailability of cadmium in contaminated soil. Scientific Reports, 10, 9528.

    Google Scholar 

  • Chowdhary, P., Raj, A., & Bharagava, R. N. (2018). Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: A review. Chemosphere, 194, 229–246.

    CAS  Google Scholar 

  • Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143, 220–225.

    CAS  Google Scholar 

  • Erdoğan, S., Önal, Y., Akmil-Başar, C., Bilmez-Erdemoğlu, S., Sarıcı-Özdemir, Ç., Köseoğlu, E., & İçduygu, G. (2005). Optimization of nickel adsorption from aqueous solution by using activated carbon prepared from waste apricot by chemical activation. Applied Surface Science, 252(5), 1324–1331.

    Google Scholar 

  • George, J., & Sabapathi, S. N. (2015). Cellulose nanocrystals: Synthesis, functional properties, and applications. Nanotechnology, Science and Applications, 8, 45–54.

    CAS  Google Scholar 

  • Guo, Q., Ma, Q., Xue, Z., Gao, X., & Chen, H. (2018). Studies on the binding characteristics of three polysaccharides with different molecular weight and flavonoids from corn silk (Maydis stigma). Carbohydrate Polymers, 198, 581–588.

    CAS  Google Scholar 

  • Habiba, U., AfifiA, A. M., Salleh, A., & Ang, B. C. (2017). Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+. Journal of Hazardous Materials, 322(Part A), 182–194.

    CAS  Google Scholar 

  • Ho, Y. S. (2006). Isotherms for the sorption of lead onto peat: Comparison of linear and non-linear methods. Polish Journal of Environmental, 15(1), 81–86.

    CAS  Google Scholar 

  • Ho, Y. S., & Mckay, G. (1999). A kinetic study of dye sorption by biosorbent waste product pith. Resources, Conservation and Recycling, 25, 171–193.

    Google Scholar 

  • Ho, Y. S., Porter, J. F., & Mckay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water, Air, & Soil Pollution, 141(1–33).

  • Jamshidifard, S., Koushkbaghi, S., Hosseini, S., Rezaei, S., Karamipour, A., Rad, A. J., & Irani, M. (2019). Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. Journal of Hazardous Materials, 368, 10–20.

    CAS  Google Scholar 

  • Jang, W., Yun, J., Jeon, K., & Byun, H. (2015). PVdF/graphene oxide hybrid membranes via electrospinning for water treatment applications. RSC Advances, 5(58), 46711–46717.

    CAS  Google Scholar 

  • Kokol, V., Božič, M., Vogrinčič, R., & Mathew, A. P. (2015). Characterisation and properties of homo- and heterogenously phosphorylated nanocellulose. Carbohydrate Polymers, 125, 301–313.

    CAS  Google Scholar 

  • Kumar, R., Chawla, J., & Kaur, I. (2015). Removal of cadmium ions from wastewater by carbon-based nanosorbents: A review. Journal of Water and Health, 13(1), 18–33.

    Google Scholar 

  • Lakhdhar, I., Belosinschi, D., Mangin, P., & Chabot, B. (2016). Development of a bio-based sorbent media for the removal of nickel ions from aqueous solutions. Journal of Environmental Chemical Engineering, 4(3), 3159–3169.

    CAS  Google Scholar 

  • Lemma, S. M., Bossard, F., & Rinaudo, M. (2016). Preparation of pure and stable chitosan nanofibers by electrospinning in the presence of poly(ethylene oxide). International Journal of Molecular Sciences, 17(11), 1774–1790.

    Google Scholar 

  • Li, L., Li, Y., Cao, L., & Yang, C. (2015a). Enhanced chromium (VI) adsorption using nanosized chitosan fibers tailored by electrospinning. Carbohydrate Polymers, 125, 206–213.

    CAS  Google Scholar 

  • Li, M., Wu, Q., Song, K., Lee, S., Qing, Y., & Wu, Y. (2015b). Cellulose nanoparticles: Structure–morphology–rheology relationships. ACS Sustainable Chemistry & Engineering, 3(5), 821–832.

    CAS  Google Scholar 

  • Liu, P., Borrell, P. F., Božič, M., Kokol, V., Oksman, K., & Mathew, A. P. (2015). Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. Journal of Hazardous Materials, 294, 177–185.

    CAS  Google Scholar 

  • Luo, X., Yuan, J., Liu, Y., Liu, C., Zhu, X., Dai, X., Ma, Z., & Wang, F. (2017). Improved solid-phase synthesis of phosphorylated cellulose microsphere adsorbents for highly effective Pb2+ removal from water: Batch and fixed-bed column performance and adsorption mechanism. ACS Sustainable Chemical & Engineering, 5(6), 5108–5117.

    CAS  Google Scholar 

  • Martins, B. L., Cruz, C. V., Luna, A. S., & Henriques, C. A. (2006). Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass. Biochemical Engineering Journal, 27, 310–314.

    CAS  Google Scholar 

  • Mautner, A., Maples, H. A., Kobkeatthawin, T., Kokol, V., Karim, Z., Li, K., & Bismarck, A. (2016). Phosphorylated nanocellulose papers for copper adsorption from aqueous solutions. International journal of Environmental Science and Technology, 13(8), 1861–1872.

    CAS  Google Scholar 

  • Montoya, V. H., Goncalves, A. C., Strey, L., Rubio, F., Schwantes, D., & Casarin, J. (2013). Biosorption and removal of chromium from water by using moringa seed cake (Moringa oleifera Lam.). Quimica Nova, 36(8), 1104–1110.

    Google Scholar 

  • Moreira, S. A., Sousa, F. W., & Oliveira, A. G. (2009). Remoção de metais de solução aquosa usando bagaço de caju. Química nova, 32(7), 1717–1722.

    CAS  Google Scholar 

  • Naderi, A., Lindström, T., Flodberg, G., Sundström, J., Junel, K., Runebjörk, A. M., Weise, C. F., & Erlandsson, J. (2016). Phosphorylated nanofibrillated cellulose: Production and properties. Nordic Pulp & Paper Research Journal, 31(1), 20–29.

    CAS  Google Scholar 

  • Noguchi, Y., Homma, I., & Matsubara, Y. (2017). Complete nanofibrillation of cellulose prepared by phosphorylation. Cellulose, 24(3), 1295–1305.

    CAS  Google Scholar 

  • Pan, H., Song, L., Ma, L., Pan, Y., Liew, K. M., & Hu, Y. (2014). Layer-by-layer assembled thin films based on fully biobased polysaccharides: Chitosan and phosphorylated cellulose for flame-retardant cotton fabric. Cellulose, 21, 2995–3006.

    CAS  Google Scholar 

  • Pawlak, A., & Mucha, M. (2003). Thermogravimetric and FTIR studies of chitosan blends. Thermochimica Acta, 396, 153–166.

    CAS  Google Scholar 

  • Qi, Y., Yang, M., Xu, W., He, S., & Men, Y. (2017). Natural polysaccharides-modified graphene oxide for adsorption of organic dyes from aqueous solutions. Journal of Colloid and Interface Science, 486, 84–96.

    CAS  Google Scholar 

  • Rahimzadeh, M. R., Rahimzadeh, M. R., Kazemi, S., & Moghadamnia, A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal of Internal Medicine, 8(3), 135–145.

    Google Scholar 

  • Ray, S. S., Chen, S., Li, C., Nguyenac, N. C., & Nguyenac, H. T. (2016). A comprehensive review: Electrospinning technique for fabrication and surface modification of membranes for water treatment application. RSC Advances, 6(88), 85495–85514.

    CAS  Google Scholar 

  • Rodell, M., Famiglietti, J. S., Wiese, D. N., Reager, J. T., Beaudoing, H. K., Landerer, J. W., & Lo, M. H. (2018). Emerging trends in global freshwater availability. Nature, 557, 651–659.

    CAS  Google Scholar 

  • Sangsanoh, P., & Supaphol, P. (2006). Stability improvement of electrospun chitosan nanofibrous membranes in neutral or weak basic aqueous solutions. Biomacromolecules, 7(10), 2710–2714.

    CAS  Google Scholar 

  • Saxena, G., Chandra, R., & Bharagava, R. N. (2016). Environmental pollution, toxicity profile and treatment approaches for tannery wastewater and its chemical pollutants. Reviews of Environmental Contamination and Toxicology, 240, 31–69.

    Google Scholar 

  • Suflet, D., Popescu, I., & Pelin, I. (2017). Preparation and adsorption studies of phosphorylated cellulose microspheres. Cellulose Chemistry and Technology, 51(1–2), 23–34.

    CAS  Google Scholar 

  • Tian, Y., Wu, M., Liu, R., Li, Y., Wang, D., Tan, J., Wu, R., & Huang, Y. (2011). Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydrate Polymers, 83(2), 743–748.

    CAS  Google Scholar 

  • Ungureanu, G., Santos, S., Boaventura, R., & Botelho, C. (2015). Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. Journal of Environmental Management, 151, 326–342.

    CAS  Google Scholar 

  • Van den Broek, L. A. M., Knoop, R. J. L., Kappen, F. H. J., & Boeriu, C. G. (2015). Chitosan films and blends for packaging material. Carbohydrate Polymers, 116, 237–242.

    Google Scholar 

  • Xiao, P., Zhang, J., Feng, Y., Wu, J., He, J., & Zhang, J. (2014). Synthesis, characterization and properties of novel cellulose derivatives containing phosphorus: Cellulose diphenyl phosphate and its mixed esters. Cellulose, 21(4), 2369–2378.

    CAS  Google Scholar 

  • Xu, X., Ding, N. S. H., & Hou, F. F. (2018). Environmental pollution and kidney diseases. Nature Reviews Nephrology, 14, 313–324.

    CAS  Google Scholar 

  • Younes, I., & Rinaudo, M. (2015). Chitin and chitosan preparation from marine sources. Structure, properties and applications. Marine Drugs, 13(3), 1133–1174.

    CAS  Google Scholar 

  • Zhang, L., Zeng, Y., & Cheng, C. (2016). Removal of heavy metal ions using chitosan and modified chitosan: A review. Journal of Molecular Liquids, 214, 175–191.

    CAS  Google Scholar 

  • Zhou, D., Kim, D., & Ko, S. (2015). Heavy metal adsorption with biogenic manganese oxides generated by pseudomonas putida strain MnB1. Journal of Industrial and Engineering Chemistry, 24, 132–139.

    CAS  Google Scholar 

  • Zilov, E. A. (2013). Water resources and the sustainable development of humankind: International cooperation in the rational use of freshwater-lake resources: Conclusions from materials of foreign studies. Water Resources, 40, 84–95.

    CAS  Google Scholar 

Download references

Funding

The authors gratefully acknowledge the financial support of the Natural Science and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Brandes.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandes, R., Brouillette, F. & Chabot, B. Laboratory Adsorption Studies on Cadmium (II) by Nonwoven Chitosan/Phosphorylated Microcellulose Nanocomposite. Water Air Soil Pollut 231, 566 (2020). https://doi.org/10.1007/s11270-020-04936-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04936-w

Keywords

Navigation