Skip to main content
Log in

Bregman Forward-Backward Operator Splitting

  • Published:
Set-Valued and Variational Analysis Aims and scope Submit manuscript

Abstract

We establish the convergence of the forward-backward splitting algorithm based on Bregman distances for the sum of two monotone operators in reflexive Banach spaces. Even in Euclidean spaces, the convergence of this algorithm has so far been proved only in the case of minimization problems. The proposed framework features Bregman distances that vary over the iterations and a novel assumption on the single-valued operator that captures various properties scattered in the literature. In the minimization setting, we obtain rates that are sharper than existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baillon, J.-B., Haddad, G.: Quelques propriétés des opérateurs angle-bornés et n-cycliquement monotones. Israel J. Math. 26, 137–150 (1977)

    Article  MathSciNet  Google Scholar 

  2. Banach, S.: Théorie des Opérations Linéaires. Seminar. Matem. Univ. Warszawa (1932)

  3. Bauschke, H.H., Bolte, J., Teboulle, M.: A descent lemma beyond Lipschitz gradient continuity: First-order methods revisited and applications. Math. Oper. Res. 42, 330–348 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Borwein, J.M.: Legendre functions and the method of random Bregman projections. J. Convex Anal. 4, 27–67 (1997)

    MathSciNet  MATH  Google Scholar 

  5. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces. Commun. Contemp. Math. 3, 615–647 (2001)

    Article  MathSciNet  Google Scholar 

  6. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    Article  MathSciNet  Google Scholar 

  7. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces, 2nd ed. Springer, New York (2017)

  8. Bauschke, H.H., Dao, M.N., Lindstrom, S.B.: Regularizing with Bregman–Moreau envelopes. SIAM J. Optim. 28, 3208–3228 (2018)

    Article  MathSciNet  Google Scholar 

  9. Borwein, J.M., Vanderwerff, J.D.: Convex Functions: Constructions, Characterizations and Counterexamples. Cambridge University Press (2010)

  10. Bourbaki, N.: Espaces Vectoriels Topologiques, Chapitres 1 à 5. Masson, Paris (1981). English translation: Topological Vector Spaces, Chapters 1–5. Springer, New York (1987)

    Google Scholar 

  11. Brézis, H., Haraux, A.: Image d’une somme d’opérateurs monotones et applications. Israel J. Math. 23, 165–186 (1976)

    Article  MathSciNet  Google Scholar 

  12. Censor, Y., Zenios, S.A.: Parallel Optimization – Theory, Algorithms and Applications. Oxford University Press, New York (1997)

    MATH  Google Scholar 

  13. Combettes, P.L., Nguyen, Q.V.: Solving composite monotone inclusions in reflexive Banach spaces by constructing best Bregman approximations from their Kuhn-Tucker set. J. Convex Anal. 23, 481–510 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Combettes, P.L., Vũ, B.C.: Variable metric quasi-Fejér monotonicity. Nonlinear Anal. 78, 17–31 (2013)

    Article  MathSciNet  Google Scholar 

  15. Combettes, P.L., Vũ, B.C.: Variable metric forward-backward splitting with applications to monotone inclusions in duality. Optimization 63, 1289–1318 (2014)

    Article  MathSciNet  Google Scholar 

  16. Frecon, J., Salzo, S., Pontil, M.: Bilevel learning of the group lasso structure. Adv. Neural Inform. Process. Syst. 31, 8301–8311 (2018)

    Google Scholar 

  17. Mercier, B.: Topics in Finite Element Solution of Elliptic Problems (Lectures on Mathematics, no. 63). Tata Institute of Fundamental Research, Bombay (1979)

    Book  Google Scholar 

  18. Nguyen, Q.V.: Forward-backward splitting with Bregman distances. Vietnam J. Math. 45, 519–539 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ortiz-Jiménez, G., El Gheche, M., Simou, E., Petric Maretić, H., Frossard, P.: Forward-backward splitting for optimal transport based problems. In: Proc. Intl. Conf. Acoust., Speech, Signal Process., pp. 5405–5409 (2020)

  20. Renaud, A., Cohen, G.: An extension of the auxiliary problem principle to nonsymmetric auxiliary operators. ESAIM Control Optim. Calc. Var. 2, 281–306 (1997)

    Article  MathSciNet  Google Scholar 

  21. Rockafellar, R.T.: Local boundedness of nonlinear, monotone operators. Michigan Math. J. 16, 397–407 (1969)

    Article  MathSciNet  Google Scholar 

  22. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149, 75–88 (1970)

  23. Salzo, S.: The variable metric forward-backward splitting algorithm under mild differentiability assumptions. SIAM J. Optim. 27, 2153–2181 (2017)

    Article  MathSciNet  Google Scholar 

  24. Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing, River Edge (2002)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick L. Combettes.

Additional information

Dedicated to Terry Rockafellar on the occasion of his 85th birthday

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the National Science Foundation under grant DMS-1818946.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bùi, M.N., Combettes, P.L. Bregman Forward-Backward Operator Splitting. Set-Valued Var. Anal 29, 583–603 (2021). https://doi.org/10.1007/s11228-020-00563-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11228-020-00563-z

Keywords

Mathematics Subject Classification (2010)

Navigation