Skip to main content
Log in

Numerical Simulation of Filtration Noise

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We numerically simulate filtration noise within the framework of the earlier proposed model for the generation of acoustic noise as a result of excitation of relaxation self-oscillations. The simulation is performed for typical parameters of reservoir rocks. As a result, appearance of the radiation frequencies observed in the experiment is demonstrated. It is also shown that due to the nonlinear interaction between elementary sources of the acoustic radiation, its spectrum is enriched with combination frequencies. In the case where the ratios of the frequencies of the interacting oscillators are fractional, the acoustic interaction can lead to nonlinear synchronization of elementary radiation sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. McKinly, F. M. Bower, and R. C. Rumble, J. Petrol. Tech., 25, No. 3, SPE-3999-PA (1973). https://doi.org/10.2118/3999-PA.

  2. E. F. Afanas’ev, K. L. Grdzelova, and D. V. Plyushchev, Dokl. Akad. Nauk SSSR, 3, 554–557 (1987).

    Google Scholar 

  3. S. A. Nikolaev and M. N. Ovchinnikov, Akust. Zh., 38, No. 1, 114–118 (1992).

    Google Scholar 

  4. A. I. Ipatov and M. I. Kremenetsky, Geophysical and Hydrodynamic Control of Hydrocarbon Field Development [in Russian], Reg. Khaot. Din. Publ., Moscow–Izhevsk (2010).

  5. E. A. Marfin, Well Noise Logging and Vibroacoustic Treatment of Fluid-Saturated Formations [in Russian], Kazan (Volga Region) Federal Univ., Kazan (2012).

  6. E. A. Marfin, I. S. Metelev, B. A. Garif’anov, and A. A. Abdrashitov, Uchen. Zap. Fiz. Fakult. Kazan Univ., 6, 146316 (2014).

    Google Scholar 

  7. G. B. Pykhachev and R. G. Isaev, Underground Hydraulics [in Russian], Nedra, Moscow (1973).

    Google Scholar 

  8. V. N. Shchelkachev and B. B. Lapuk, Underground Hydraulics, Reg. Khaot. Din. Publ., Moscow–Izhevsk (2001).

  9. L. K. Zarembo and V. A. Krasil’nikov, Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

  10. L. D. Landau and E. M. Lifshitz, Fluid Mechanics [in Russian], Butterworth-Heinemann, Oxford (1987).

    Google Scholar 

  11. K. R. Fritz, C.-C. Hantschk, S. Heim, et al., in: G. Müller and M. Möser, eds., Handbook of Engineering Acoustics, Springer-Verlag, Berlin–Heidelberg (2013), p. 577-636.

  12. G. Mavko, T. Mukeji and J. Dvorkin, The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, Cambridge Univ. Press, Cambridge (2009).

  13. G. I. Barenblatt, V. M. Entov, and V. M. Ryzhik, Motion of Fluids and Gases in Natural Formations [in Russian], Nedra, Moscow (1984).

    Google Scholar 

  14. S. I. Sergeev, N. I. Ryzhikov, and D. N.Mikhailov, J. Petrol. Sci. Eng., 172, 654–661 (2019). https://doi.org/10.1016/j.petrol.2018.08.018.

    Article  Google Scholar 

  15. Yu. M. Zaslavsky, Tekh. Akust., 5, 48–58 (2005).

    Google Scholar 

  16. A. Kh. Mirzadzhanzade, M. M. Khasanov, and R. N. Bakhtizin, Simulation of Oil and Gas Production. Nonlinearity, Nonequilibrium, and Uncertainty [in Russian], Computer Research Inst., Moscow–Izhevsk (2004).

  17. M. I. Rabinovich and D. I. Trubetskov, Oscillations and Waves in Linear and Nonlinear Systems, Kluwer, Dordrecht (1989).

  18. D. Mikhailov and S. Sergeev, Water Resources Res., 55, No. 5, 4220–4232 (2019). https://doi.org/10.1029/2018WR024168.

    Article  ADS  Google Scholar 

  19. A. V. Lebedev, Radiophys. Quantum Electron., 61, No. 4, 305–317 (2018). https://doi.org/10.1007/s11141-018-9892-5.

    Article  ADS  Google Scholar 

  20. A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Theory of Oscillators, Pergamon Press, Oxford (1966).

  21. M. A. Isakovich, General Acoustics [in Russian], Nauka, Moscow (1973).

    Google Scholar 

  22. M. Sahimi, Applications of Percolation Theory, Taylor and Francis, London (1994).

    Book  Google Scholar 

  23. M. Klaman and O. D. Lavrentovich, Soft Matter: An Introduction (Partially Ordered Media), Springer-Verlag, New York (2003).

  24. J. Dvorkin and A. Nur, Geophysics, 58, No. 4, 524–533 (1993). https://doi.org/10.1190/1.1443435.

    Article  ADS  Google Scholar 

  25. J. Dvorkin, R. Nolen-Hoeksema, and A. Nur, Geophysics, 59, No. 3, 428–438 (1994). https://doi.org/10.1190/1.1443605.

    Article  ADS  Google Scholar 

  26. A. V. Lebedev and L. A.Ostrovsky, Acoust. Phys., 60, No. 5, 555–561 (2014). https://doi.org/10.1134/S1063771014050066.

    Article  ADS  Google Scholar 

  27. A. N. Kolmogorov, Dokl. Akad. Nauk SSSR, 31, No. 2, 99–101 (1941).

    Google Scholar 

  28. L. A. Ostrovsky and P. A. Johnson, Rivista Nuovo Cim., 24, Ser. 4, No. 7, 1–46 (2001).

  29. R. A. Guyer and P. A. Johnson, Nonlinear Mesoscopic Elasticity: the Complex Behaviour of Rocks, Soil, Concrete, Wiley-VCH, Wenheim (2009).

  30. E. Skudrzyk, Simple and Complex Vibratory Systems, The Pennsylvania State Univ. Press, University Park, Pa. (1968).

    MATH  Google Scholar 

  31. N. P. Chrotiros, Acoustics of the Seabed as a Poroelastic Medium, Springer, New York (2017).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Lebedev.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 2, pp. 155–171, February 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, A.V. Numerical Simulation of Filtration Noise. Radiophys Quantum El 63, 142–156 (2020). https://doi.org/10.1007/s11141-020-10042-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10042-y

Navigation