Skip to main content
Log in

Ethylene Epoxidation in AC Dielectric Barrier Discharge Over Silver-Based Catalysts with Different Second Metals

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

This work was to investigate the effects of Ag-based catalysts and the addition of a second metal (Sn or Cu) loaded on an 0.1% wt% Ag catalyst on the ethylene epoxidation performance in a low-temperature and atmospheric pressure parallel plate dielectric barrier discharge (DBD) system with two frosted-glass plates and a separate N2O/C2H4 feed. The combined catalyst-DBD system with the 0.1 wt% Ag catalyst was found to provide significantly higher ethylene oxide (EO) selectivity, as compared to the sole DBD system, due to the additional surface reactions on the boundary area between the Ag active sites and silica support. The addition of the second metal (Sn or Cu) on the 0.1 wt% Ag catalyst substantially improved the EO selectivity, by reducing Ag particle sintering for Sn and increasing in the stability of oxometallacycle intermediates with high activation barriers for the formation of other products, causing an increased selectivity towards EO formation for Cu.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Diao W, DiGiulio CD, Schaal MT, Ma S, Monnier JR (2015) An investigation on the role of Re as a promoter in AgCsRe/α-Al2O3 high-selectivity, ethylene epoxidation catalysts. J Catal 322:14–23. https://doi.org/10.1016/j.jcat.2014.11.007

    Article  CAS  Google Scholar 

  2. Dellamorte JC, Lauterbach J, Barteau MA (2009) Promoter-induced morphological changes of Ag catalysts for ethylene epoxidation. Ind Eng Chem Res 48(13):5943–5953. https://doi.org/10.1021/ie801627k

    Article  CAS  Google Scholar 

  3. Rocha TCR, Hävecker M, Knop-Gericke A, Schlögl R (2014) Promoters in heterogeneous catalysis: the role of Cl on ethylene epoxidation over Ag. J Catal 312:12–16. https://doi.org/10.1016/j.jcat.2014.01.002

    Article  CAS  Google Scholar 

  4. Torres D, Lopez N, Illas F, Lambert RM (2005) Why copper is intrinsically more selective than silver in alkene epoxidation: ethylene oxidation on Cu(111) versus Ag(111). J Am Chem Soc 127(31):10774–10775. https://doi.org/10.1021/ja043227t

    Article  CAS  PubMed  Google Scholar 

  5. Chavadej S, Rojluechai S, Schwank JW, Meeyoo V (2008) Chapter 9—effect of support on ethylene epoxidation on Ag, Au, and Au–Ag catalysts. In: Oyama ST (ed) Mechanisms in homogeneous and heterogeneous epoxidation catalysis. Elsevier, Amsterdam, pp 283–296. https://doi.org/10.1016/B978-0-444-53188-9.00009-2

    Chapter  Google Scholar 

  6. Chongterdtoonskul A, Schwank JW, Chavadej S (2013) Comparative study on the influence of second metals on Ag-loaded mesoporous SrTiO3 catalysts for ethylene oxide evolution. J Mol Catal A: Chem 372:175–182. https://doi.org/10.1016/j.molcata.2013.02.016

    Article  CAS  Google Scholar 

  7. Sreethawong T, Suwannabart T, Chavadej S (2009) Ethylene epoxidation in low-temperature AC corona discharge over Ag catalyst: effect of promoter. Chem Eng J 155(1–2):396–403. https://doi.org/10.1016/j.cej.2009.07.056

    Article  CAS  Google Scholar 

  8. Dellamorte JC, Lauterbach J, Barteau MA (2011) Palladium–silver bimetallic catalysts with improved activity and selectivity for ethylene epoxidation. Appl Catal A 391(1–2):281–288. https://doi.org/10.1016/j.apcata.2010.06.023

    Article  CAS  Google Scholar 

  9. Lefort T (1931) French Patent 729952

  10. Schmitz J (2018) Low temperature thin films for next-generation microelectronics (invited). Surf Coat Technol 343:83–88. https://doi.org/10.1016/j.surfcoat.2017.11.013

    Article  CAS  Google Scholar 

  11. Nguyen DB, Heo IJ, Mok YS (2018) Enhanced performance at an early state of hydrocarbon selective catalyst reduction of NOx by atmospheric pressure plasma. J Ind Eng Chem 68:372–379. https://doi.org/10.1016/j.jiec.2018.08.011

    Article  CAS  Google Scholar 

  12. Nguyen DB, Nguyen VT, Heo IJ, Mok YS (2019) Removal of NOx by selective catalytic reduction coupled with plasma under temperature fluctuation condition. J Ind Eng Chem 72:400–407. https://doi.org/10.1016/j.jiec.2018.12.042

    Article  CAS  Google Scholar 

  13. Wang J, Yi H, Tang X, Zhao S, Gao F, Zhang R, Yang Z (2017) Products yield and energy efficiency of dielectric barrier discharge for NO Conversion: effect of O2 content, NO concentration, and flow rate. Energy Fuels 31(9):9675–9683. https://doi.org/10.1021/acs.energyfuels.7b01094

    Article  CAS  Google Scholar 

  14. Trinh QH, Kim SH, Mok YS (2016) Removal of dilute nitrous oxide from gas streams using a cyclic zeolite adsorption-plasma decomposition process. Chem Eng J 302:12–22. https://doi.org/10.1016/j.cej.2016.05.030

    Article  CAS  Google Scholar 

  15. Wang B, Xu X, Xu W, Wang N, Xiao H, Sun Y, Huang H, Yu L, Fu M, Wu J, Chen L, Ye D (2018) The mechanism of non-thermal plasma catalysis on volatile organic compounds removal. Catal Surv Asia 22(2):73–94. https://doi.org/10.1007/s10563-018-9241-x

    Article  CAS  Google Scholar 

  16. Wang X, Gao Y, Zhang S, Sun H, Li J, Shao T (2019) Nanosecond pulsed plasma assisted dry reforming of CH4: the effect of plasma operating parameters. Appl Energy 243:132–144. https://doi.org/10.1016/j.apenergy.2019.03.193

    Article  CAS  Google Scholar 

  17. Liu Z, Huang B, Zhu W, Zhang C, Tu X, Shao T (2020) Phase-resolved measurement of atmospheric-pressure radio-frequency pulsed discharges in Ar/CH4/CO2 mixture. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-020-10071-5

    Article  Google Scholar 

  18. Martin-del-Campo J, Coulombe S, Kopyscinski J (2020) Influence of operating parameters on plasma-assisted dry reforming of methane in a rotating gliding arc reactor. Plasma Chem Plasma Process. https://doi.org/10.1007/s11090-020-10074-2

    Article  Google Scholar 

  19. Ozkan A, Dufour T, Arnoult G, De Keyzer P, Bogaerts A, Reniers F (2015) CO2–CH4 conversion and syngas formation at atmospheric pressure using a multi-electrode dielectric barrier discharge. J CO2 Util 9:74–81. https://doi.org/10.1016/j.jcou.2015.01.002

    Article  Google Scholar 

  20. Rincón R, Marinas A, Muñoz J, Calzada MD (2014) Hydrogen production from ethanol decomposition by microwave plasma TIAGO torch. Int J Hydrog Energy 39(22):11441–11453. https://doi.org/10.1016/j.ijhydene.2014.05.128

    Article  CAS  Google Scholar 

  21. Wang B, Ge W, Lü Y, Yan W (2013) H2 production by ethanol decomposition with a gliding arc discharge plasma reactor. Front Chem Sci Eng 7(2):145–153. https://doi.org/10.1007/s11705-013-1327-4

    Article  CAS  Google Scholar 

  22. Taghvaei H, Jahanmiri A, Rahimpour MR, Shirazi MM, Hooshmand N (2013) Hydrogen production through plasma cracking of hydrocarbons: effect of carrier gas and hydrocarbon type. Chem Eng J 226:384–392. https://doi.org/10.1016/j.cej.2013.04.035

    Article  CAS  Google Scholar 

  23. Aleknaviciute I, Karayiannis TG, Collins MW, Xanthos C (2013) Methane decomposition under a corona discharge to generate COx-free hydrogen. Energy 59:432–439

    Article  CAS  Google Scholar 

  24. Chavadej S, Dulyalaksananon W, Suttikul T (2016) Ethylene epoxidation in a low-temperature parallel plate dielectric barrier discharge system with two frosted glass plates. Chem Eng Process 107:127–137. https://doi.org/10.1016/j.cep.2016.05.010

    Article  CAS  Google Scholar 

  25. Suttikul T, Kodama S, Sekiguchi H, Chavadej S (2014) Ethylene epoxidation in an AC dielectric barrier discharge jet system. Plasma Chem Plasma Process 34(1):187–205

    Article  CAS  Google Scholar 

  26. Suttikul T, Sreethawong T, Sekiguchi H, Chavadej S (2011) Ethylene epoxidation over alumina- and silica-supported silver catalysts in low-temperature AC dielectric barrier discharge. Plasma Chem Plasma Process 31(2):273–290. https://doi.org/10.1007/s11090-010-9280-1

    Article  CAS  Google Scholar 

  27. Chavadej S, Tansuwan A, Sreethawong T (2008) Ethylene epoxidation over alumina-supported silver catalysts in low-temperature AC corona discharge. Plasma Chem Plasma Process 28(5):643–662. https://doi.org/10.1007/s11090-008-9150-2

    Article  CAS  Google Scholar 

  28. Suttikul T, Yaowapong-aree S, Sekiguchi H, Chavadej S, Chavadej J (2013) Improvement of ethylene epoxidation in low-temperature corona discharge by separate ethylene/oxygen feed. Chem Eng Process 70:222–232

    Article  CAS  Google Scholar 

  29. Li Y, Liu CJ, Eliasson B, Wang Y (2002) Synthesis of oxygenates and higher hydrocarbons directly from methane and carbon dioxide using dielectric-barrier discharges: product distribution. Energy Fuels 16(4):864–870. https://doi.org/10.1021/ef0102770

    Article  CAS  Google Scholar 

  30. Suttikul T, Chavadej S (2017) Ethylene epoxidation in a low-temperature parallel plate dielectric barrier discharge system: effect of oxygen source. Ind Eng Chem Res 56(44):12547–12555. https://doi.org/10.1021/acs.iecr.7b03469

    Article  CAS  Google Scholar 

  31. Suttikul T, Tongurai C, Sekiguchi H, Chavadej S (2012) Ethylene epoxidation in cylindrical dielectric barrier discharge: effects of separate ethylene/oxygen feed. Plasma Chem Plasma Process 32(6):1169–1188

    Article  CAS  Google Scholar 

  32. Sreethawong T, Permsin N, Suttikul T, Chavadej S (2010) Ethylene epoxidation in low-temperature AC dielectric barrier discharge: effect of electrode geometry. Plasma Chem Plasma Process 30(4):503–524

    Article  CAS  Google Scholar 

  33. Suttikul T, Paosombat B, Santikunaporn M, Leethochawalit M, Chavadej S (2014) Improvement of ethylene epoxidation in a parallel plate dielectric barrier discharge system by ethylene/oxygen separate feed and Ag catalyst. Ind Eng Chem Res 53(10):3778–3786. https://doi.org/10.1021/ie402659c

    Article  CAS  Google Scholar 

  34. Zhao JL, Zhou JC, Su J, Guo HC, Wang XS, Gong WM (2007) Propene epoxidation with in-site H2O2 produced by H2/O2 non-equilibrium plasma. AIChE J 53(12):3204–3209. https://doi.org/10.1002/aic.11317

    Article  CAS  Google Scholar 

  35. Hong J, Pancheshnyi S, Tam E, Lowke JJ, Prawer S, Murphy AB (2018) Corrigendum: Kinetic modelling of NH3 production in N2–H2 non-equilibrium atmospheric-pressure plasma catalysis (2017 J. Phys. D: Appl. Phys. 50 154005). J Phys D Appl Phys 51(10):109501. https://doi.org/10.1088/1361-6463/aaa988

    Article  CAS  Google Scholar 

  36. Vervloessem E, Aghaei M, Jardali F, Hafezkhiabani N, Bogaerts A (2020) Plasma-based N2 fixation into NOx: insights from modeling toward optimum yields and energy costs in a gliding arc plasmatron. ACS Sustain Chem Eng 8(26):9711–9720. https://doi.org/10.1021/acssuschemeng.0c01815

    Article  CAS  Google Scholar 

  37. Eliasson B, Kogelschatz U (1991) Nonequilibrium volume plasma chemical processing. IEEE Trans Plasma Sci 19(6):1063–1077. https://doi.org/10.1109/27.125031

    Article  CAS  Google Scholar 

  38. Sreethawong T, Suwannabart T, Chavadej S (2008) Ethylene epoxidation in low-temperature AC dielectric barrier discharge: effects of oxygen-to-ethylene feed molar ratio and operating parameters. Plasma Chem Plasma Process 28(5):629–642

    Article  CAS  Google Scholar 

  39. Chavadej S, Kiatubolpaiboon W, Rangsunvigit P, Sreethawong T (2007) A combined multistage corona discharge and catalytic system for gaseous benzene removal. J Mol Catal A: Chem 263(1–2):128–136. https://doi.org/10.1016/j.molcata.2006.08.061

    Article  CAS  Google Scholar 

  40. Lacson J (2003) Ethylene oxide. In: Chemical Economics Handbook. SRI International, Menlo Park, CA

  41. Minahan DM, Hoflund GB, Epling WS, Schoenfeld DW (1997) Study of Cs-promoted, α-alumina-supported silver, ethylene epoxidation catalysts: III. Characterization of Cs-promoted and nonpromoted catalysts. J Catal 168(2):393–399. https://doi.org/10.1006/jcat.1997.1626

    Article  CAS  Google Scholar 

  42. Liu X, Li Y, Lee JW, Hong C-Y, Mou C-Y, Jang BWL (2012) Selective hydrogenation of acetylene in excess ethylene over SiO2 supported Au–Ag bimetallic catalyst. Appl Catal A 439–440:8–14. https://doi.org/10.1016/j.apcata.2012.06.030

    Article  CAS  Google Scholar 

  43. Date L, Radouane K, Caquineau H, Despax B, Couderc JP, Yousfi M (1999) Analysis of the N2O dissociation by r.f. discharges in a plasma reactor. Surf Coat Technol 116–119:1042–1048. https://doi.org/10.1016/S0257-8972(99)00287-X

    Article  Google Scholar 

  44. Suter HU, Greber T (2004) On the dissociation of N2O after electron attachment. J Phys Chem B 108(38):14511–14517. https://doi.org/10.1021/jp049204i

    Article  CAS  Google Scholar 

  45. Maihom T, Choomwattana S, Wannakao S, Probst M, Limtrakul J (2016) Ethylene epoxidation with nitrous oxide over Fe–BTC Metal-organic frameworks: a DFT study. ChemPhysChem 17(21):3416–3422. https://doi.org/10.1002/cphc.201600836

    Article  CAS  PubMed  Google Scholar 

  46. Esrafili MD, Saeidi N, Dinparast L (2017) Epoxidation of ethylene over Pt-, Pd- and Ni-doped graphene in the presence of N2O as an oxidant: a comparative DFT study. New J Chem 41(18):9815–9825. https://doi.org/10.1039/C7NJ01089C

    Article  CAS  Google Scholar 

  47. Wagner S, Öström H, Kaebe A, Krenz M, Wolf M, Luntz AC, Frischkorn C (2008) Activated associative desorption of C + O → CO from Ru (001) induced by femtosecond laser pulses. New J Phys 10(12):125031

    Article  Google Scholar 

  48. Özbek MO, Van Santen RA (2013) The mechanism of ethylene epoxidation catalysis. Catal Lett 143(2):131–141. https://doi.org/10.1007/s10562-012-0957-3

    Article  CAS  Google Scholar 

  49. Jankowiak JT, Barteau MA (2005) Ethylene epoxidation over silver and copper-silver bimetallic catalysts: II. Cs and Cl promotion. J Catal 236(2):379–386. https://doi.org/10.1016/j.jcat.2005.10.017

    Article  CAS  Google Scholar 

  50. Zhanpeisov NU, Ju WS, Matsuoka M, Anpo M (2003) Quantum chemical calculations on the structure and adsorption properties of NO and N2O on Ag + and Cu + ion-exchanged zeolites. Struct Chem 14(3):247–255. https://doi.org/10.1023/a:1023855611539

    Article  CAS  Google Scholar 

  51. Held A, Kowalska-Kuś J, Nowińska K (2016) Propane-to-propene oxide oxidation on silica-supported vanadium catalysts with N2O as an oxidant. J Catal 336:23–32. https://doi.org/10.1016/j.jcat.2015.12.028

    Article  CAS  Google Scholar 

  52. Held A, Kowalska-Kuś J, Łapiński A, Nowińska K (2013) Vanadium species supported on inorganic oxides as catalysts for propene epoxidation in the presence of N2O as an oxidant. J Catal 306:1–10. https://doi.org/10.1016/j.jcat.2013.06.001

    Article  CAS  Google Scholar 

  53. Woods MP, Mirkelamoglu B, Ozkan US (2009) Oxygen and nitrous oxide as oxidants: implications for ethane oxidative dehydrogenation over silica–titania-supported molybdenum. J Phys Chem C 113(23):10112–10119. https://doi.org/10.1021/jp810664u

    Article  CAS  Google Scholar 

  54. Jang B, Helleson M, Shi C, Rondinone A, Schwartz V, Liang C, Overbury S (2008) Characterization of Al2O3 supported nickel catalysts derived from RF non-thermal plasma technology. Top Catal 49(3):145–152. https://doi.org/10.1007/s11244-008-9091-2

    Article  CAS  Google Scholar 

  55. Dellamorte JC, Lauterbach J, Barteau MA (2007) Rhenium promotion of Ag and Cu-Ag bimetallic catalysts for ethylene epoxidation. Catal Today 120(2):182–185. https://doi.org/10.1016/j.cattod.2006.07.051

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the King Mongkut’s University of Technology North Bangkok (KMUTNB-61-KNOW-003) and Thailand Research Fund (Grant MRG6180241). The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Thailand are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thitiporn Suttikul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chavadej, S., Suttikul, T. Ethylene Epoxidation in AC Dielectric Barrier Discharge Over Silver-Based Catalysts with Different Second Metals. Plasma Chem Plasma Process 41, 265–288 (2021). https://doi.org/10.1007/s11090-020-10141-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10141-8

Keywords

Navigation