Skip to main content

Advertisement

Log in

Three-Dimensional Two-Temperature Modeling of Ar Loop-Type Inductively Coupled Thermal Plasma for Surface Modification

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this paper, numerical calculations were made for Ar loop-type inductively coupled thermal plasma (loop-ICTP). The loop-ICTP was developed originally by the authors’ group for rapid surface modification of large areas. Loop-ICTP is sustained with a unique three-dimensional (3D) configuration inside a circular loop quartz tube and on the substrate. A 3D and two-temperature thermofluid thermal plasma model was adopted for this calculation. Mass, momentum, and energy conservation equations were solved using a Maxwell equation for vector potential, an electron energy transport equation, and Saha’s equation in the 3D space. Results indicate that Ar loop-ICTP can be sustained and formed in the loop tube and also on the substrate. Moreover, the heavy particle temperatures reaches 1800–2000 K, whereas the electron temperature is about 10,000 K. Loop size effects on the gas temperature and gas flow field were also investigated using the developed model. Results show that adoption of a larger loop tube can be expected to improve the plasma uniformity on the substrate when applied to rapid surface modification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Abbreviations

\({\varvec{A}}\) :

Vector potential (Wb/m)

\({\varvec{B}}\) :

Magnetic flux density (T)

\({\varvec{E}}\) :

Electric field strength (V/m)

\(T_{\mathrm{h}}\) :

Heavy particle temperature (K)

\(T_{\mathrm{e}}\) :

Electron temperature (K)

\(\rho\) :

Mass density (kg/m\(^3\))

\({\varvec{u}}\) :

Gas flow velocity (m/s)

p :

Pressure (Pa)

k :

Kinetic energy of turbulence (m\(^2\)/s\(^2\))

\(\epsilon\) :

Turbulence dissipation rate (m\(^2\)/s\(^3\))

\(C_{\mathrm{p}}\) :

Specific heat at constant pressure (J/(kg K))

\(\eta _{\mathrm{heff}}\) :

Effective viscosity for heavy particles (Pa s)

\(\eta _{\mathrm{h}\ell }\) :

Laminar viscosity for heavy particles (Pa s)

\(\eta _{\mathrm{ht}}\) :

Turbulent viscosity for heavy particles (Pa s)

\(\kappa _{\mathrm{heff}}\) :

Effective thermal conductivity for heavy particles (W/(m K))

\(\kappa _{\mathrm{h}\ell }^{\mathrm{tr}}\) :

Translational thermal conductivity for heavy particle in laminar flow (W/(m K))

\(\kappa _{\mathrm{e}\ell }^{\mathrm{tr}}\) :

Translational thermal conductivity for electrons in laminar flow (W/(m K))

\(\kappa _{\mathrm{ht}}\) :

Turbulent thermal conductivity for heavy particles (W/(m K))

\(\mu _{\mathrm{e}}\) :

Electron mobility (m\(^2\)/(V s))

\(\omega\) :

Angular frequency of coil current (rad/s)

\({\varvec{\tau }}\) :

Stress tensor (Pa)

\(P_{\mathrm{in}}\) :

Joule heating power per unit volume (W/m\(^3\))

\(P_{\mathrm{rad}}\) :

Radiation loss power (W/m\(^3\))

\(P_{\mathrm{total}}\) :

Total input power for whole calculation volume (W)

\(\pi {\bar{\Omega }}_{ij}\) :

Collision integral between species \(i-j\) (m\(^2\))

\(Z_j\) :

Internal partition function of species j (–)

\({\bar{v}}_{\mathrm{eAr}}\) :

Relative thermal velocity of electron-Ar (m/s)

\(m_{\mathrm{e}}\), \(m_{\mathrm{Ar}}\) :

Mass of electron and Ar (kg)

\(n_{\mathrm{e}}\), \(n_{\mathrm{Ar}}\), \(n_{{\mathrm{Ar}^+}}\) :

Number density of e, Ar, Ar\(^+\) (m\(^{-3}\))

e :

Electronic charge (C)

\(h_{\mathrm{P}}\) :

Planck’s constant (J s)

\(\mu _0\) :

Permeability for vacuum (H/m)

\(k_{\mathrm{B}}\) :

Boltzmann’s constant (J/K)

\(E_{\mathrm{Ar}}\) :

Ar ionization energy (J)

\(\varepsilon\) :

Dielectric constant (F/m)

References

  1. Zhang X, Hayashida R, Tanaka M, Watanabe T (2020) Synthesis of carbon-coated silicon nanoparticles by induction thermal plasma for lithium ion battery. Powder Technol 371:26–36

    Article  CAS  Google Scholar 

  2. Dhamale GD, Tak AK, Mathe VL, Ghorui S (2018) Nucleation and growth of Y2O3 nanoparticles in a RF-ICTP reactor: a discrete sectional study based on CFD simulation supported with experiments. J Phys D Appl Phys 51(25):255202

    Article  Google Scholar 

  3. Shigeta M, Watanabe T (2016) Effect of saturation pressure difference on metal-silicide nanopowder formation in thermal plasma fabrication. Nanomaterials 6(3):43

    Article  Google Scholar 

  4. Choi S, Matsuo J, Watanabe T (2013) Synthesis of \(\text{ AlB}_{12}\) and \(\text{ YB}_{66}\) nanoparticles by RF thermal plasmas. J Phys: Conf Ser 441:012030

    Google Scholar 

  5. Colombo V, Ghedini E, Gherardi M, Sanibondi P (2013) Evaluation of precursor evaporation in Si nanoparticle synthesis by inductively coupled thermal plasmas. Plasma Sources Sci Technol 22:035010

    Article  Google Scholar 

  6. Colombo V, Ghedini E, Gherardi M, Sanibondi P (2012) Modelling for the optimization of the reaction chamber in silicon nanoparticle synthesis by a radio-frequency induction thermal plasma. Plasma Sources Sci Technol 21:055007

    Article  Google Scholar 

  7. Pristavita R, Mendoza-Gonzalez NY, Meunier JL, Berk D (2011) Carbon nanoparticle production by inductively coupled thermal plasmas: Controlling the thermal history of particle nucleation. Plasma Chem Plasma Process 31:851–66

    Article  CAS  Google Scholar 

  8. Alinejad Y, Faucheux N, Soucy G (2013) Preosteoblasts behavior in contact with single-walled carbon nanotubes synthesized by radio frequency induction thermal plasma using various catalysts. J Appl Toxicol 33:1143–55

    Article  CAS  Google Scholar 

  9. Shahverdi A, Soucy G (2012) Thermogravimetric analysis of single-walled carbon nanotubes synthesized by induction thermal plasma. J Therm Anal Calorim 110:1079–85

    Article  CAS  Google Scholar 

  10. Szepvolgyi J, Markovic Z, Todorovic-Markovic B, Nikolic Z, Mohai I, Farkas Z, Toth M, Kovats E, Scheier P, Feil S (2006) Effects of precursors and plasma parameters on fullerene synthesis in RF thermal plasma reactor. Plasma Chem Plasma Process 26:597–608

    Article  Google Scholar 

  11. Wang C, Inazaki A, Shiraia T, Tanaka Y, Sakuta T, Takikawa H, Matsuo H (2003) Effect of ambient gas and pressure on fullerene synthesis in induction thermal plasma. Thin Solid Films 425:41–8

    Article  CAS  Google Scholar 

  12. Berghaus JO, Meunier JL, Gitzhofer F (2004) Monitoring and control of RF thermal plasma diamond deposition via substrate biasing. Meas Sci Technol 15:161–4

    Article  CAS  Google Scholar 

  13. Matsumoto S, Hino M, Kobayashi T (1987) Synthesis of diamond films in a RF induction thermal plasma. Appl Phys Lett 51:737–9

    Article  CAS  Google Scholar 

  14. Pedersen JD, Esposito HJ, Teh KS (2011) Direct synthesis and characterization of optically transparent conformal zinc oxide nanocrystalline thin films by rapid thermal plasma CVD. Nanoscale Res Lett 6(568):1–12

    Google Scholar 

  15. Hou H, Veilleux J, Gitzhofer F, Wang Q (2020) Vertical grain and columnar structured Ba(\(\text{ Mg}_{1/3} \text{ Ta}_{2/3}\))\(\text{ O}_3\) thermal barrier coating deposited by solution precursor plasma spray. Surf Coat Technol 393:125803

    Article  CAS  Google Scholar 

  16. Vahabzadeh S, Roy M, Bandyopadhyay A, Bose S (2015) Phase stability and biological property evaluation of plasma sprayed hydroxyapatite coatings for orthopedic and dental applications. Acta Biomater 17:47–55

    Article  CAS  Google Scholar 

  17. Nutsch G (2011) Atmospheric induction plasma spraying. High Temp Mater Process Int Q High-Technol Plasma Process 15:61–74

    Article  CAS  Google Scholar 

  18. Tanaka H, Osawa T, Moriyoshi Y, Kurihara M, Maruyama S, Ishigaki T (2004) Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma. Thin Solid Films 457:209–16

    Article  CAS  Google Scholar 

  19. Helber B, Turchi A, Magin TE (2017) Determination of active nitridation reaction efficiency of graphite in inductively coupled plasma flows. Carbon 125:582–594

    Article  CAS  Google Scholar 

  20. Fazekas P, Bodis E, Keszler AM, Zs Czegeny, Sz Klebert, Karoly Z, Szepvolgyi J (2013) Decomposition of chlorobenzene by thermal plasma processing. Plasma Chem Plasma Process 33:765–78

    Article  CAS  Google Scholar 

  21. Akao M, Kuraishi K, Tanaka Y, Uesugi Y, Ishijima T, Yoshida T (2013) Temperature evolution in a large volume planar type of modulated thermal plasmas. Int Symp Plasma Chem ISPC 21:247

    Google Scholar 

  22. Tial MKS, Irie H, Maruyama Y, Tanaka Y, Uesugi Y, Ishijima T (2016) Fundamentals of planar-type inductively coupled thermal plasmas on a substrate for large-area material processing. Jap J Appl Phys 55(7S2):07LB03

    Article  Google Scholar 

  23. Tial MKS, Tanaka Y, Akao M, Uesugi Y, Ishijima T (2016) Fundamental properties of a planar type of inductively coupled thermal plasmas with current modulation. JPD 49:385204

    Article  Google Scholar 

  24. Tial MKS, Tanaka Y, Maruyama Y, Tsuchiya T, Uesugi Y, Ishijima T (2017) Uniform surface oxidation of an Si substrate by a planar modulated inductively coupled thermal plasma with molecular gas feed. Plasma Chem Plasma Process 37(3):857–76

    Article  CAS  Google Scholar 

  25. Tanaka Y, Irie H, Maruyama Y, Tial MKS, Uesugi Y, Ishijima T, Yoshida T, Yukimoto T, Kawaura H (2015) Development of a loop-type of inductively coupled thermal plasmas with molecular gas injection for large-area uniform materials processings. Int Symp Plasma Chem ISPC 22:O-21-3

    Google Scholar 

  26. Maruyama Y, Tanaka Y, Irie H, Tsuchiya T, Tial MKS, Uesugi Y, Ishijima T, Yukimoto T, Kawaura H (2016) Rapid surface oxidation of the Si substrate using longitudinally long Ar/\(\text{ O}_{2}\) loop type of inductively coupled thermal plasmas. IEEE Trans PS 44:3164–71

    CAS  Google Scholar 

  27. Tsuchiya T, Tanaka Y, Maruyama Y, Fujita A, Tial MKS, Uesugi Y, Ishijima T, Yukimoto T, Kawaura H (2018) Loop type of inductively coupled thermal plasmas system for rapid two-dimensional oxidation of Si substrate surface. Plasma Chem Plasma Process 38:599–620

    Article  CAS  Google Scholar 

  28. Okumura T (2013) Recovery of plasma-induced si substrate damage using atmospheric thermal plasma. In: Proceedings of the 35th dry process symposium, C-2, Jeju, Korea

  29. Okumura T, Kawaura H (2013) Elongated inductively coupled thermal plasma torch operable at atmospheric pressure. Jpn J Appl Phys 52:05EE01

    Article  Google Scholar 

  30. Okumura T, Eriguchi K, Saitoh M, Kawaura H (2014) Annealing performance improvement of elongated inductively coupled plasma torch and its application to recovery of plasma. Jpn J Appl Phys 53:03DG01

    Article  Google Scholar 

  31. Tanaka T (2004) Two-temperature chemically non-equilibrium modelling of high-power \(\text{ Ar- }\text{ N}_2\) inductively coupled plasma at atmospheric pressure. J Phys D Appl Phys 37:1190–1205

    Article  CAS  Google Scholar 

  32. Tanaka Y (2009) Thermally and chemically non-equilibrium modeling of \(\text{ Ar- }\text{ N}_2\)-\(\text{ H}_2\) inductively coupled plasmas at reduced pressure. Thin Solid Films 518:936–942

    Article  CAS  Google Scholar 

  33. Al-Mamun SA, Tanaka Y, Uesugi Y (2010) Two-temperature non-chemical equilibrium analysis of \(\text{ Ar- }\text{ CH}_4\)-\(\text{ O}_2\) ICTP at reduced pressure. Thin Solid Films 518:3535–3540

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Genki Ozeki or Yasunori Tanaka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozeki, G., Tanaka, Y., Sugiyama, Y. et al. Three-Dimensional Two-Temperature Modeling of Ar Loop-Type Inductively Coupled Thermal Plasma for Surface Modification. Plasma Chem Plasma Process 41, 85–108 (2021). https://doi.org/10.1007/s11090-020-10144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10144-5

Keywords

Navigation