Skip to main content
Log in

Transversally higher-order interpolating polynomials for the two-dimensional shear deformable ANCF beam elements based on common coefficients

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

The polynomial representation for describing the displacement field of the elements is the main factor that determines the performance of the shear deformable beam elements based on the absolute nodal coordinate formulation (ANCF). In order to resolve the locking problem of the ANCF beam elements, the transversally higher-order polynomial representation has been investigated frequently and applied to the displacement field of the elements by increasing the nodal coordinates of the beam elements. In this paper, transversally higher-order interpolating polynomials are added into the polynomial displacement field of the elements by using common coefficients which mean that the coefficients between the higher-order longitudinal and transversal polynomial components are common. The implementation does not require the increase of the nodal coordinates. Two new kinds of two-dimensional transversally higher-order ANCF beam elements are formulated by common coefficients. The effect of transversally higher-order interpolating polynomials on the performance of the proposed ANCF beam elements is studied by means of certain static and dynamic problems. It is shown that the transversally quadratic order polynomial component \(y^{2}\) introduced by common coefficients can also relieve the problem of Poisson locking, and the proposed beam elements are effective and accurate in the static and dynamic analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Shabana, A.A.: Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody Syst. Dyn. 1(3), 339–348 (1997)

    Article  MathSciNet  Google Scholar 

  2. Berzeri, M., Shabana, A.A.: Development of simple models for the elastic forces in the absolute nodal coordinate formulation. J. Sound Vib. 235(4), 539–565 (2000)

    Article  Google Scholar 

  3. Berzeri, M., Campanelli, M., Shabana, A.A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5(1), 21–54 (2001)

    Article  Google Scholar 

  4. Tian, Q., Zhang, Y.Q., Chen, L.P., Qin, G.: Advances in the absolute nodal coordinate method for the flexible multibody dynamics. Adv. Mech. 40(2), 189–193 (2010)

    Google Scholar 

  5. Gerstmayr, J., Sugiyama, H., Mikkola, A.M.: Review on the absolute nodal coordinate formulation for large deformation analysis of multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016 (2013)

    Article  Google Scholar 

  6. Nachbagauer, K.: State of the art of ANCF elements regarding geometric description, interpolation strategies, definition of elastic forces, validation and the locking phenomenon in comparison with proposed beam finite elements. Arch. Comput. Methods Eng. 21(3), 293–319 (2014)

    Article  MathSciNet  Google Scholar 

  7. Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34(1–2), 53–74 (2003)

    Article  Google Scholar 

  8. Gerstmayr, J., Matikainen, M.K., Mikkola, A.M.: A geometrically exact beam element based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 20(4), 359–384 (2008)

    Article  MathSciNet  Google Scholar 

  9. Nachbagauer, K., Pechstein, A.S., Irschik, H., Gerstmayr, J.: A new locking-free formulation for planar, shear deformable, linear and quadratic beam finite elements based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 26(3), 245–263 (2011)

    Article  Google Scholar 

  10. Nachbagauer, K., Gruber, P., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to static and linearized dynamic examples. J. Comput. Nonlinear Dyn. 8(2), 021004 (2013)

    Article  Google Scholar 

  11. Nachbagauer, K., Gerstmayr, J.: Structural and continuum mechanics approaches for a 3D shear deformable ANCF beam finite element: application to buckling and nonlinear dynamic examples. J. Comput. Nonlinear Dyn. 9(1), 011013 (2014)

    Article  Google Scholar 

  12. Zhang, X.S., Zhang, D.G., Chen, S.J., Hong, J.Z.: Several dynamic models of a large deformation flexible beam based on the absolute nodal coordinate formulation. Acta Phys. Sin. 65(9), 094501 (2016)

    Google Scholar 

  13. Zhang, D.Y., Luo, J.J., Zheng, Y.H., Yuan, J.P.: Analysis of planar shear deformable beam using rotation field curvature formulation. Acta Phys. Sin. 66(11), 114501 (2017)

    Google Scholar 

  14. Zheng, Y.H., Shabana, A.A., Zhang, D.Y.: Curvature expressions for the large displacement analysis of planar beam motions. J. Comput. Nonlinear Dyn. 13(1), 011013 (2018)

    Article  Google Scholar 

  15. Romero, I.: A comparison of finite elements for nonlinear beams: the absolute nodal coordinate and geometrically exact formulations. Multibody Syst. Dyn. 20(1), 51–68 (2008)

    Article  MathSciNet  Google Scholar 

  16. Patel, M., Shabana, A.A.: Locking alleviation in the large displacement analysis of beam elements: the strain split method. Acta Mech. 229(7), 2923–2946 (2018)

    Article  MathSciNet  Google Scholar 

  17. Shabana, A.A., Patel, M.: Coupling between shear and bending in the analysis of beam problems: planar case. J. Sound Vib. 419(2018), 510–525 (2018)

    Article  Google Scholar 

  18. Omar, M., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001)

    Article  Google Scholar 

  19. Kerkkänen, K.S., Sopanen, J.T., Mikkola, A.M.: A linear beam finite element based on the absolute nodal coordinate formulation. ASME J. Mech. Des. 127(4), 621–630 (2005)

    Article  Google Scholar 

  20. Garcia-Vallejo, D., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50(1–2), 249–264 (2007)

    Article  Google Scholar 

  21. Li, P.F., Gantoi, F.M., Shabana, A.A.: Higher order representation of the beam cross section deformation in large displacement finite element analysis. J. Sound Vib. 330(26), 6495–6508 (2011)

    Article  Google Scholar 

  22. Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. ASME J. Mech. Des. 123(4), 606–613 (2001)

    Article  Google Scholar 

  23. Yakoub, R.Y., Shabana, A.A.: Three dimensional absolute nodal coordinate formulation for beam elements: implementation and applications. ASME J. Mech. Des. 123(4), 614–621 (2001)

    Article  Google Scholar 

  24. Gerstmayr, J., Matikainen, M.K.: Analysis of stress and strain in the absolute nodal coordinate formulation. Mech. Based Des. Struct. Mach. 34(4), 409–430 (2006)

    Article  Google Scholar 

  25. Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal coordinate formulation. Nonlinear Dyn. 45(1–2), 109–130 (2006)

    Article  Google Scholar 

  26. Shen, Z.X., Li, P., Liu, C., Hu, G.K.: A finite element beam model including cross-section distortion in the absolute nodal coordinate formulation. Nonlinear Dyn. 77(3), 1019–1033 (2014)

    Article  Google Scholar 

  27. Grzegorz, O., Shabana, A.A.: Analysis of warping deformation modes using higher order ANCF beam element. J. Sound Vib. 363(2016), 428–445 (2016)

    Google Scholar 

  28. Henrik, E., Matikainen, M.K., Hurskainen, V.V., Mikkola, A.M.: Higher-order beam elements based on the absolute nodal coordinate formulation for three-dimensional elasticity. Nonlinear Dyn. 88(2), 1075–1091 (2017)

    Article  Google Scholar 

  29. Yu, H.D., Zhao, C.Z., Zheng, B., Wang, H.: A new higher-order locking-free beam element based on the absolute nodal coordinate formulation. J. Mech. Eng. Sci. 232(9), 3410–3423 (2017)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the grants from the National Natural Science Foundation of China (No. 51775328).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun H. Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest concerning the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C.H., Bao, K.W. & Tao, Y.L. Transversally higher-order interpolating polynomials for the two-dimensional shear deformable ANCF beam elements based on common coefficients. Multibody Syst Dyn 51, 475–495 (2021). https://doi.org/10.1007/s11044-020-09768-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09768-4

Keywords

Navigation