Skip to main content
Log in

Genetic analysis of rice seed recovery under low-temperature conditions using a new CSSL population with a high-density genetic map in rice

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Developing new population types based on interspecific introgressions has been suggested to facilitate the discovery of novel allelic sources for traits of agronomic importance. In this study, a chromosome segment substitution line (CSSL) rice population carrying contiguous chromosomal segments of japonica Nipponbare in the genetic background of indica 9311 was developed. Meanwhile, a high-density genetic map including 655 bins covering a distance of 1480.2 Mb, with an average of 0.60 Mb between markers, was generated through a whole-genome resequencing approach. Compared with previous CSSL populations constructed from 9311 or Nipponbare, this population has a higher marker density and can effectively meet the requirements of high QTL mapping resolution. On the basis of the newly constructed high-density genetic map, a total of three major QTLs (qGP4, qGP5, and qBL4) conferring seed growth capacity after low-temperature (5 °C) treatment were detected. Among these, two QTLs shared by Nipponbare, qGP4 and qGP5, could increase germination percentage, while one QTL shared by Nipponbare, qBL4, could increase bud length after cold stress; qGP4 and qBL4 were first reported in our study. These QTLs could be highly valuable genetic factors for cold tolerance improvement in rice lines. The CSSLs carrying these QTLs not only provide an opportunity for map-based cloning of important cold tolerance QTLs but also supply useful inbred lines to improve cold tolerance in 9311. These CSSLs represent good sources of japonica tolerance QTLs (genes) for use in improving cold tolerance in indica rice directly, avoiding the genetic drag arising from incompatible epistasis effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  • Balakrishnan D, Surapaneni M, Mesapogu S, Neelamraju S (2019) Development and use of chromosome segment substitution lines as a genetic resource for crop improvement. Theor Appl Genet 132:1–25

    CAS  PubMed  Google Scholar 

  • Bian J, Jiang L, Liu LL, Wei XJ, Xiao YH, Zhang LJ, Zhao ZG, Zhai HQ, Wan JM (2010) Construction of a new set of rice chromosome segment substitution lines and identifcation of grain weight and related traits QTLs. Breed Sci 60:305–313

    Google Scholar 

  • Chen QQ, Mu JX, Zhou HJ, Yu SB (2007) Genetic efect of japonica alleles detected in indica candidate introgression lines. Sci Agric Sin 40:2379–2387

    Google Scholar 

  • Fujino K, Matsuda Y (2010) Genome-wide analysis of genes targeted by qLTG3-1 controlling low-temperature germinability in rice. Plant Mol Biol 72:137–152

    CAS  PubMed  Google Scholar 

  • Fujino K, Sekeguchi H, Matsuda Y, Sugimoto K, Ono K, Yano M (2008) Molecular identification of a major quantitative trait locus, qLTG3-1, controlling low-temperature germinability in rice. Proc Natl Acad Sci U S A 105(34):12623–12628

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Huiwen Yu H, Tang Z, Jiang X, Wang L, Wang X, Xu Q, Deng X (2015) Construction of a SNP-based high-density genetic map for pummelo using RAD sequencing. Tree Genet Genome 11:2

    Google Scholar 

  • Hori K, Sugimoto K, Nonoue Y, Ono N, Matsuba K, Yamanouchi U, Abe A, Takeuchi Y, Yano M (2010) Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theor Appl Genet 120:1547–1557

    PubMed  PubMed Central  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G, Sang T, Han B (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19:1068–1076

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang X, Kurata N, Wei X, Wang Z, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012) A map of rice genome variation reveals the origin of cultivated rice. Nature 490(7421):497–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Iwata N, Shinada H, Kiuchi H, Sato T, Fujino K (2010) Mapping of QTLs controlling seedling establishment using a direct seeding method in rice. Breed Sci 60:353–360

    Google Scholar 

  • Ji SL, Jiang L, Wang YH, Liu SJ, Liu X, Zhai HQ, Wan JM (2007) Detection and analysis of QTL for germination rate at low temperature in rice(Oryza sativa L.) using backcross inbred lines.Journal of. Nanjing Agric Univ 30(1):1–6

    CAS  Google Scholar 

  • Jiang N, Shi S, Shi H, Khanzada H, Wassan GM, Zhu C, Peng X, Yu Q, Chen X, He X, Fu J, Hu L, Xu J, Ouyang L, Sun X, Zhou D, He H, Bian J (2017) Mapping QTL for seed germinability under low temperature using a new high-density genetic map of rice. Front Plant Sci 12(8):1223

    Google Scholar 

  • Koseki M, Kitazawa N, Yonebayashi S, Maehara Y, Wang ZX, Minobe Y (2010) Identification and fine mapping of a major quantitative trait locus originating from wild rice, controlling cold tolerance at the seedling stage. Mol Gen Genomics 284:45–54

    CAS  Google Scholar 

  • Li L, Mao D (2018) Deployment of cold tolerance loci from Oryza sativa ssp. Japonica cv. ‘Nipponbare’ in a high-yielding Indica rice cultivar ‘93-11’. Plant Breed 137:553–560

    CAS  Google Scholar 

  • Li HH, Zhang LY, Wang JK (2010) Analysis and solution of some common problems in quantitative trait gene mapping research. Acta Agron Sin 36(06):918–931

    Google Scholar 

  • Li L, Chen H, Ma D (2019) Pyramiding of rapid germination loci from Oryza Sativa cultivar ‘Xieqingzao B’and cold tolerance loci from Dongxiang wild rice to increase. Mol Breed 39:85

    Google Scholar 

  • Liu F, Xu W, Song Q, Tan L, Liu J, Zhu Z, Fu Y, Su Z, Sun C (2013) Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice. Mol Plant 6(3):757–767

    CAS  PubMed  Google Scholar 

  • Liu C, Ou S, Mao B, Tang J, Wang W, Wang H, Cao S, Schläppi MR, Zhao B, Xiao G, Wang X, Chu C (2018) Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun 9(1)

  • Liu C, Schläppi MR, Mao B, Wang W, Wang A, Chu C (2019) The bZIP73 transcription factor controls rice cold tolerance at the reproductive stage. Plant Biotechnol J

  • Liu W, Pan X, Xiong H, Huang F, Duan Y, Li Y, Min J, Liu S, Liu L, Wei X, Zhao W, Li X (2020) QTL mapping and validation of a segment responsible for early-seedling cold tolerance in rice. Euphytica 216:7

    CAS  Google Scholar 

  • Lou QJ, Chen L, Sun ZX, Xing YZ, Li J, Xu XY, Mei HW, Luo LJ (2007) A major QTL associated with cold tolerance at seedling stage in rice (Oryza sativa L.). Euphytica 158:87–94

    CAS  Google Scholar 

  • Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HH, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1–13

    Google Scholar 

  • Mackill DJ, Lei X (1997) Genetic variation for traits related to temperate adaptation of rice cultivars. Crop Sci 37:1340–1346

    Google Scholar 

  • Mao D, Xin Y, Tan Y, Hu X, Bai J, Liu Z, Yu Y, Li L, Peng C, Fan T, Zhu Y, Guo Y, Wang S, Lu D, Xing Y, Yuan L, Chen C (2019) Natural variation in the HAN1 gene confers chilling tolerance in rice and allowed adaptation to a temperate climate. Proc Natl Acad Sci 116(9):3494–3501

    CAS  PubMed  Google Scholar 

  • McCouch SR (2008) Gene nomenclature system for rice. Rice 1:72–84

    Google Scholar 

  • Murray M, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8(19):4321–4325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng X, He H, Zhu G, Jiang L, Zhu C, Yu Q, He J, Shen X, Yan S, Bian J (2017) Identifcation and analyses of chromosome segments affecting heterosis using chromosome-segment substitution lines in rice. Crop Sci 57(4):1836–1843

    CAS  Google Scholar 

  • Qiao W, Qi L, Cheng Z, Su L, Li J, Sun Y, Ren J, Zheng X, Yang Q (2016) Development and characterization of chromosome segment substitution lines derived from Oryza rufipogon in the genetic background of O. sativa spp. indica cultivar 9311. BMC Genomics 17:580

    PubMed  PubMed Central  Google Scholar 

  • Saito K, Hayano-Saito Y, Kuroki M, Sato Y (2010) Map-based cloning of the rice cold tolerance gene Ctb1.Plant. Sci 179(1–2):97–102

    CAS  Google Scholar 

  • Sasaki T, Burr B (2000) International rice genome sequencing project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141

    CAS  PubMed  Google Scholar 

  • Shen YJ, Jiang H, Jin JP, Zhang ZB, Xi B, He YY, Wang G, Wang C, Qian L, Li X, Yu QB, Liu HJ, Chen DH, Gao JH, Huang H, Shi TL, Yang ZN (2004) Development of genome-wide DNA polymorphism database for map-based cloning of rice genes. Plant Physiol 135(3):1198–1205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Udin SN, Soejadi (1991) Predrying and soaking seeds can be effective methods to break the dormancy of IR64 seeds. Seed Sci Technol 19(2)

  • Van OJ (2006) JoinMap 4 software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Wang Z, Wang F, Zhou R, Wang J, Zhang H (2011) Identification of quantitative trait loci for cold tolerance during the germination and seedling stages in rice (Oryza sativa L.). Euphytica 181:405–413

    Google Scholar 

  • Wang X, Fang G, Li Y, Ding M, Gong H, Li Y (2013) Differential antioxidant responses to cold stress in cell suspension cultures of two subspecies of rice. Plant Cell Tissue Organ Cult 113:353–361

    CAS  Google Scholar 

  • Xiao N, Gao Y, Qian H, Gao Q, Wu Y, Zhang D, Zhang X, Yu L, Li Y, Pan C, Liu G, Zhou C, Jiang M, Huang N, Dai Z, Liang C, Chen Z, Chen J, Li A (2018) Identification of genes related to cold tolerance and a functional allele that confers cold tolerance. Plant Physiol 177(3):1108–1123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie L, Tan Z, Zhou Y, Xu R, Feng L, Xing Y, Qi X (2014) Identification and fine mapping of quantitative trait loci for seed vigor in germination and seedling establishment in rice. J Integr Plant Biol 56:749–759

    CAS  PubMed  Google Scholar 

  • Xu J, Zhao Q, Du P, Xu C, Wang B, Feng Q, Liu Q, Tang S, Gu M, Han B, Liang G (2010) Developing high throughput genotyped chromosome segment substitution lines based on population whole-genome re-sequencing in rice (Oryza sativa L.). BMC Genomics 11:656

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu CY, Wan JM, Zhai HQ, Wang CM, Jiang L, Xiao YH, Liu YQ (2005) Study on heterosis of intersubspecies between indica and japonica rice (Oryza sativa L.) using chromosome segment substitution lines. Chin Sci Bull 50:131–136

    Google Scholar 

  • Zhang ZH, Li S, Wei L, Wei C, Zhu YG (2005) A major QTL conferring cold tolerance at the early seedling stage using recombinant inbred lines of rice (Oryza sativa L.). Plant Sci 168:527–534

    CAS  Google Scholar 

  • Zhang H, Zhao Q, Sun ZZ, Zhang CQ, Feng Q, Tang SZ, Liang GH, Gu MH, Han B, Liu QQ (2011) Development and high-throughput genotyping of substitution lines carrying the chromosome segments of indica 9311 in the background of japonica Nipponbare. J Genet Genomics 38:603–611

    CAS  PubMed  Google Scholar 

  • Zhang Z, Li J, Pan Y, Li J, Zhou L, Shi H, Zeng Y, Guo H, Yang S, Zheng W, Yu J, Sun X, Li G, Ding Y, Ma L, Shen S, Dai L, Zhang H, Yang S, Guo Y, Li Z (2017) Natural variation in CTB4a enhances rice adaptation to cold habitats. Nat Commun 8(1):14788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao L, Zhou H, Lu L, Liu L, Li X, Lin Y, Yu S (2009) Identification of quantitative trait loci controlling rice mature seed culturability using chromosomal segment substitution lines. Plant Cell Rep 28:247–256

    PubMed  Google Scholar 

  • Zhao J, Zhang S, Dong J, Yang T, Mao X, Liu Q, Wang X, Liu B (2017) A novel functional gene associated with cold tolerance at the seedling stage in rice.Plant. Biotechnol J 15(9):1141–1148

    CAS  Google Scholar 

  • Zhao J, Wang S, Qin J, Sun C, Liu F (2019) The lipid transfer protein OsLTPL159 is involved in cold tolerance at the early seedling stage in rice.Plant Biotechnol J 18 (3):756–769

  • Zhu WY, Lin J, Yang DW, Zhao L, Zhang YD, Zhu Z, Chen T, Wang CL (2009) Development of chromosome segment substitution lines derived from backcross between two sequenced rice cultivars, indica recipient 93-11 and japonica donor Nipponbare. Plant Mol Biol Rep 27:126–131

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the anonymous referees for their critical comments on this manuscript.

Funding

This study was supported by grants 20192ACBL20017 and 20192BCB23010 from Project of Science and Technology Department of Jiangxi Province, grant (JXYJG-2018-062) from Jiangxi Provincial Department of Education.

Author information

Authors and Affiliations

Authors

Contributions

JB and HH designed the experiments. GW, HD, MY, YC, DZ, JT, JY, XL, ST, PW, XZ, CL, CL, YW, and QC performed the experiments and analyzed the results. GW, HD, and MY wrote the manuscript. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Haohua He or Jianmin Bian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 67 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, G., Deng, H., Yu, M. et al. Genetic analysis of rice seed recovery under low-temperature conditions using a new CSSL population with a high-density genetic map in rice. Mol Breeding 40, 109 (2020). https://doi.org/10.1007/s11032-020-01189-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-020-01189-7

Keywords

Navigation