Skip to main content
Log in

Theoretical Study for Dynamic Strain Aging in Niobium: Effect of Temperature and Strain Rate on the Flow Stress

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

A constitutive model for niobium with the effect of dynamic strain aging is proposed. The crystal structure of metals hugely influences the dynamic strain aging phenomenon and causes considerable alterations in the material’s macroscopic mechanical responses. Dynamic strain aging needs to be accounted for in a constitutive model to obtain accurate predictions of material’s thermo-mechanical behaviors during deformation. The proposed constitutive model attempts to describe the material’s flow stress responses during deformation by separating the flow stress contributions into the athermal component, thermal component, and dynamic strain aging component. Two different mathematical equations are proposed to model the dynamic strain aging component. The proposed model attempts to describe the mechanical response of niobium for a wide range of strain rates: from quasi-static loading (\(\dot{\varepsilon } = 0.001\,{\text{s}}^{ - 1}\)) to dynamic loading (\(\dot{\varepsilon } = 3300\, {\text{s}}^{ - 1}\)) across the temperature ranges 77 K–800 K.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S. Nemat-Nasser, W.G. Guo, Mater. Sci. Eng. A-Struct. 284, 202–210 (2000)

    Article  Google Scholar 

  2. S. Nemat-Nasser, Y. Li, Acta Mater. 46, 565–577 (1998)

    Article  CAS  Google Scholar 

  3. S. Nemat-Nasser, W.G. Guo, Mech. Mater. 32, 243–260 (2000)

    Article  Google Scholar 

  4. S. Nemat-Nasser, J.B. Isaacs, Acta Mater. 45, 907–919 (1997)

    Article  CAS  Google Scholar 

  5. A. Keh, Y. Nakada, W. Leslie, Dislocation Dynamics (McGraw Hill, London, 1968), pp. 81–87

  6. Y. Bergstrom, W. Roberts, Acta Metall. Mater. 19, 1243–1251 (1971)

    Article  CAS  Google Scholar 

  7. G.Z. Voyiadjis, F.H. Abed, Mech. Mater. 37, 355–378 (2005)

    Article  Google Scholar 

  8. A. Rusinek, J.R. Klepaczko, Int. J. Plasticity 17, 87–115 (2001)

    Article  CAS  Google Scholar 

  9. G.Z. Voyiadjis, Y. Song, A. Rusinek, Mech. Mater. 129, 352–360 (2019)

    Article  Google Scholar 

  10. Y. Song, D. Garcia-Gonzalez, A. Rusinek, Materials 13, 1794 (2020)

    Article  CAS  Google Scholar 

  11. Y. Song, G.Z. Voyiadjis, Eur. J. Mech. A-Solid 83, 104034 (2020)

    Article  Google Scholar 

  12. G.Z. Voyiadjis, Y. Song, Acta Mech. 231, 19–34 (2020)

    Article  Google Scholar 

  13. D.J. Bammann, E.C. Aifantis, Acta Mech. 45, 91–121 (1982)

    Article  Google Scholar 

  14. J. R. Klepaczko, in Constitutive Relations and Their Physical Basis, ed. by S.I. Andersen, J.B. Bilde-Sorensen, N. Hansen, T. Leffers, H. Lilholt, O.B. Pedersen, B. Ralph. the 8th Risø International Symposium on Metallurgy and Materials Science, Roskilde, September 7-11, 1987. (Risø National Laboratory, Roskilde, 1987), pp, 387–395

  15. S. Arrhenius, Z. Phys. Chem. 4, 96–116 (1889)

    Article  Google Scholar 

  16. U.F. Kocks, A.S. Argon, M.F. Ashby, Prog. Mater Sci. 19, 1–281 (1975)

    Article  Google Scholar 

  17. S. Nemat-Nasser, W.G. Guo, J.Y. Cheng, Acta Mater. 47, 3705–3720 (1999)

    Article  CAS  Google Scholar 

  18. F.J. Zerilli, R.W. Armstrong, J. Appl. Phys. 61, 1816–1825 (1987)

    Article  CAS  Google Scholar 

  19. D. Rittel, L.H. Zhang, S. Osovski, J. Mech. Phys. Solids 107, 96–114 (2017)

    Article  CAS  Google Scholar 

  20. A.H. Cottrell, Philos. Mag. 44, 829–832 (1953)

    Article  CAS  Google Scholar 

  21. P.G. Mccormick, Acta Metall. Mater. 36, 3061–3067 (1988)

    Article  CAS  Google Scholar 

  22. G.I. Taylor, J. Inf. Met. 62, 307–324 (1938)

    Google Scholar 

  23. J.J. Wang, W.G. Guo, X.S. Gao, J. Su, Int. J. Plasticity 65, 85–107 (2015)

    Article  CAS  Google Scholar 

  24. C. Fressengeas, A. Molinari, J. Mech. Phys. Solids 35, 185–211 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yooseob Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Peterson, W. Theoretical Study for Dynamic Strain Aging in Niobium: Effect of Temperature and Strain Rate on the Flow Stress. Met. Mater. Int. 28, 589–602 (2022). https://doi.org/10.1007/s12540-020-00902-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00902-7

Keywords

Navigation