Skip to main content
Log in

Bubble solutions for a supercritical polyharmonic Hénon-type equation

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We consider the following problem involving supercritical exponent and polyharmonic operator:

$$\begin{aligned} (-\Delta )^mu=K(|y|)u^{m^*-1+\varepsilon }, \;u>0, \hbox { in } B_1(0), \; u \in {\mathcal {D}}_0^{m,2}(B_1(0)), \end{aligned}$$

where \(B_1(0)\) is the unit ball in \({\mathbb {R}}^{N}\), \(m^*=\frac{2N}{N-2m}\) is the critical exponent,\(\; N\ge 2m+2\), \( m \in {\mathbb {N}}_+\), \(\varepsilon > 0\), K(|y|) is a nonnegative bounded function. We prove that if \(\varepsilon > 0\) is small enough, this problem has large number of bubble solutions, and the number of its bubbles varies with the parameter \(\varepsilon \) at the order \(\varepsilon ^{-1/(N-2m+1)}\) as \(\varepsilon \rightarrow 0^+\). Moreover, all bubbles of the solutions approach the boundary of \(B_1(0)\) as \(\varepsilon \) goes to \(0^+\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahri, A.: Critical points at infinity in some variational problems, Pitman Res. Notes Math. Ser. vol. 182, Longman Scientific & Technical (1989)

  2. Bartsch, T., Weth, T.: Multiple solutions of a critical polyharmonic equation. J. Reine Angew. Math. 571, 131–143 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Bartsch, T., Weth, T., Willem, M.: A Sobolev inequality with remainder term and critical equations on domains with topology of the domain. Calc. Var. Partial. Differ. Equ. 18, 253–268 (2003)

    MATH  Google Scholar 

  4. Byeon, J., Wang, Z.: On the Hénon equation: asymptotic profile of ground states, II. J. Differ. Equ. 216, 78–108 (2005)

    MATH  Google Scholar 

  5. Byeon, J., Wang, Z.: On the Hénon equation: asymptotic profile of ground states, I. Ann. Inst. H. Poincaré Anal. Non Linéaire 23, 803–828 (2006)

    MathSciNet  MATH  Google Scholar 

  6. Branson, T.: Group representations arising from Lorentz conformal geomtry. J. Funct. Anal. 74, 199–291 (1987)

    MathSciNet  MATH  Google Scholar 

  7. Chang, S.Y.A., Yang, P.C.: Partial differential equations related to the Gauss-Bonnet-Chern integrand on \(4-\)manifolds, Proc. Conformal, Riemannian and Lagrangian Geometry, Univ. Lecture Ser. vol. 27, Amer. math. Soc., Providence, RI, 1-30 (2002)

  8. Cao, D., Peng, S.: The asymptotic behaviour of the ground state solutions for Hénon equation. J. Math. Anal. Appl. 278, 1–17 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Cao, D., Peng, S., Yan, S.: Asymptotic behaviour of ground state solutions for the Hénon equation. IMA J. Appl. Math. 74, 468–480 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Chen, W., Wei, J., Yan, S.: Infinitely many positive solutions for the Schrödinger equations in \({\mathbb{R}}^{N}\) with critical growth. J. Differ. Equ. 252, 2425–2447 (2012)

    MATH  Google Scholar 

  11. Deng, Y., Lin, C., Yan, S.: On the prescribed scalar curvature problem in \({\mathbb{R}}^N\), local uniqueness and periodicity. J. Math. Pures. Appl. 104, 1013–1044 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Edmunds, D.E., Fortunato, D., Jannelli, E.: Critical exponents, critical dimensions and biharmonic operator. Arch Ration. Mech. Anal. 112, 269–289 (1990)

    MathSciNet  MATH  Google Scholar 

  13. Gazzola, F., Grunau, H., Squassina, M.: Existence and non-existence results for critical growth biharmonic elliptic equations. Calc. Var. Partial. Differ. Equ. 18, 117–243 (2003)

    MATH  Google Scholar 

  14. Gidas, B., Ni, W., Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys. 68, 209–243 (1979)

    MathSciNet  MATH  Google Scholar 

  15. Gladiali, F., Grossi, M.: Supercritical elliptic problem with non-autonomous nonlinearities. J. Differ. Equ. 253, 2616–2645 (2012)

    MATH  Google Scholar 

  16. Gladiali, F., Grossi, M., Neves, S.L.N.: Nonradial solutions for the Hénon equation in \({\mathbb{R}}^N\). Adv. Math. 249, 1–36 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Grunau, H.: Positive solutions to semilinear polyharmonic Dirichlet problem operators involving critical Sobolev exponents. Calc. Var. Partial. Differ. Equ. 3, 243–252 (1995)

    MATH  Google Scholar 

  18. Grunau, H., Sweers, G.: The maximum principle and positive principle eigenfunctions for polyharmonic equations. Lect. Notes Pure Appl. Math. 194, 163–182 (1998)

    MATH  Google Scholar 

  19. Grunau, H., Sweers, G.: Positivity for equations involving polyharmonic operators with Dirichlet boundary conditions. Math. Ann. 307, 588–626 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Guo, Y., Li, B.: Infinitely many solutions for the prescribed curvature problem of polyharmonic operator. Calc. Var. Partial. Differ. Equ. 46, 809–836 (2013)

    MathSciNet  MATH  Google Scholar 

  21. Guo, Y., Li, B., Li, Y.: Infinitely many non-radial solutions for the polyharmonic Hénon equation with a critical exponent. Proc. Roy. Soc. Edinburgh Sect. 147A, 371–396 (2017)

    MathSciNet  MATH  Google Scholar 

  22. Guo, Y., Peng, S., Yan, S.: Local uniqueness and periodicity induced by concentration. Proc. London. Math. Soc. 114, 1005–1043 (2017)

    MathSciNet  MATH  Google Scholar 

  23. Hirano, N.: Existence of positive solutions for the Henon equation involving critical Sobolev terms. J. Differ. Equ. 247, 1311–1333 (2009)

    MATH  Google Scholar 

  24. Hao, J., Chen, X., Zhang, Y.: Infinitely many spike solutions for the Hénon equation with critical growth. J. Differ. Equ. 259, 4924–4946 (2015)

    MATH  Google Scholar 

  25. Koshanov, B.D., Koshanova, M.D.: On the representation of the Green function of the Dirichlet problem and their properties for the polyharmonic equations. Adv. in Math. Sci. 020020, 1–6 (2015)

    Google Scholar 

  26. Li, S., Peng, S.: Asymptotic behavior on the Hnon equation with supercritical exponent. Sci. China Ser. A 52, 2185–2194 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Liu, Z., Peng, S.: Solutions with large number of peaks for the supercritical Hénon equation. Pacific J. Math. 280, 115–139 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Li, Y., Wei, J., Xu, H.: Multi-bump solutions of \(-\Delta u=K(x)u^{\frac{n+2}{n-2}}\) on lattices in \({\mathbb{R}}^n\). J. Reine Angew. Math. 743, 163–211 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Ni, W.: A nonlinear Dirichlet problem on the unit ball and its applications. Indiana Univ. Math. J. 31, 801–807 (1982)

    MathSciNet  MATH  Google Scholar 

  30. Paneitz, S.: A quartic conformally covariant differential operator for arbitrary pseudo-Riemannian manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. 4(2008), Paper 036, 3 pp

  31. Pohoz̆aev, S.I.: On the eigenfunctions of the equation \(\Delta u + \lambda f(u)=0\). Dokl. Akad. Nauk SSSR 165, 36–39 (1965)

    MathSciNet  Google Scholar 

  32. Pino, M., Felmer, P., Musso, M.: Two-bubble solutions in the super-critical Bahri-Coron’s problem. Calc. Var. Partial. Differ. Equ. 16, 113–145 (2003)

    MathSciNet  MATH  Google Scholar 

  33. Pistoia, A., Serra, E.: Multi-peak solutions for the Hénon equation with slightly subcritical growth. Math. Z. 256, 75–97 (2007)

    MathSciNet  MATH  Google Scholar 

  34. Pucci, P., Serrin, J.: A general variational identity. Indiana Univ. Math. J. 35, 681–703 (1986)

    MathSciNet  MATH  Google Scholar 

  35. Pucci, P., Serrin, J.: Critical exponents and critical dimensions for polyharmonic operators. J. Math. Pures. Appl. 69, 55–83 (1990)

    MathSciNet  MATH  Google Scholar 

  36. Peng, S., Wang, C., Yan, S.: Construction of solutions via local Pohozaev identities. J. Funct. Anal. 274, 2606–2633 (2018)

    MathSciNet  MATH  Google Scholar 

  37. Rey, O.: The role of the Green’s function in a nonlinear elliptic problem involving the critical Sobolev exponent. J. Funct. Anal. 89, 1–52 (1990)

    MathSciNet  MATH  Google Scholar 

  38. Serra, E.: Non-radial positive solutions for the Hénon equation with critical growth. Calc. Var. Partial. Differ. Equ. 23, 301–326 (2005)

    MathSciNet  MATH  Google Scholar 

  39. Smets, D., Willem, M., Su, J.: Non-radial ground states for the Hénon equation. Commun. Contemp. Math. 4, 467–480 (2002)

    MathSciNet  MATH  Google Scholar 

  40. Swanson, C.: The best Sobolev constant. Appl. Anal. 47, 227–239 (1992)

    MathSciNet  MATH  Google Scholar 

  41. Wei, J., Yan, S.: Infinitely many nonradial solutions for the Hénon equation with critical growth. Rev. Mat. Iberoam. 29, 997–1020 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Wei, J., Yan, S.: Infinitely many positive solutions for the nonlinear Schrödinger equations in \({\mathbb{R}}^N\). Calc. Var. Partial. Differ. Equ. 37, 423–439 (2010)

    MATH  Google Scholar 

  43. Wei, J., Yan, S.: Infinitely many solutions for the prescribed scalar curvature problem on \(S^{N}\). J. Funct. Anal. 258, 3048–3081 (2010)

    MathSciNet  MATH  Google Scholar 

  44. Wei, J., Yan, S.: Infinitely many positive solutions for an elliptic problem with critical or supercritical growth. J. Math. Pures. Appl. 96, 307–333 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxia Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by NSFC (11771235, 11571040).

Appendix A: Basic estimates

Appendix A: Basic estimates

In this section, we will give some basic estimates used in the reduction procedure.

Lemma A.1

For each fixed i and j, \(i \ne j\), let

$$\begin{aligned} g_{\varepsilon ij}=\frac{1}{(1+|y-x_{\varepsilon j}|)^{\alpha }(1+|y-x_{\varepsilon i}|)^{\beta }}, \end{aligned}$$

where \(\alpha , \beta \ge 1\) are constants. Then for any constants \(0 \le \sigma \le min\{\alpha , \beta \}\), there is a constant \(C >0\), such that

$$\begin{aligned} g_{\varepsilon ij}(y) \le \frac{C}{|x_{\varepsilon i}-x_{\varepsilon j}|^{\sigma }}\left( \frac{1}{(1+|y-x_{\varepsilon j}|)^{\alpha +\beta -\sigma }} +\frac{1}{(1+|y-x_{\varepsilon i}|)^{\alpha +\beta -\sigma }}\right) . \end{aligned}$$

Lemma A.2

For any constant \(0< \sigma < N-2m\), there is a constant \(C >0\), such that

$$\begin{aligned} \int _{{\mathbb {R}}^{N}}\frac{dz}{|y-z|^{N-2m}(1+|z|)^{2m+\sigma }} \le \frac{C}{(1+|y|)^{\sigma }}. \end{aligned}$$

The proofs of the above two lemmas can be found in [20] and [43].

Lemma A.3

Suppose \(N \ge 2m+2, \; \varepsilon > 0\), then there is a \(\theta >0\) small, such that

$$\begin{aligned}&\displaystyle \int _{{\mathbb {R}}^{N}} \frac{1}{|y-z|^{N-2m}}Z_{r_\varepsilon , \lambda _\varepsilon }^{m^*-2+\varepsilon }(z)\displaystyle \sum _{j=1}^{k}\frac{1}{(1+|z-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau }}dz\\&\le C\sum _{j=1}^{k}\frac{1}{(1+|y-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau +\theta }}. \end{aligned}$$

Proof

For any \(y \in \Omega _1\), we have

$$\begin{aligned} Z_{r_\varepsilon , \lambda _\varepsilon }(z) \le C\displaystyle \sum _{j=1}^{k}\frac{1}{(1+|z-x_{\varepsilon j}|)^{N-2m}} \le \frac{C}{(1+|z-x_{\varepsilon 1}|)^{N-2m-\tau _1}}, \end{aligned}$$

where \(0 < \tau _1 \le \frac{N-2m}{2}\).

By Lemma A.1, we obtain

$$\begin{aligned} \begin{aligned}&\quad Z_{r_\varepsilon , \lambda _\varepsilon }^{m^*-2+\varepsilon }(z)\displaystyle \sum _{j=1}^{k}\frac{1}{(1+|z-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau }}\\&\le \frac{C}{(1+|z-x_{\varepsilon 1}|)^{\frac{N+6m}{2}+\tau -\frac{4m\tau _1}{N-2m}+(N-2m-\tau _1)\varepsilon }}\\&\quad +\displaystyle \sum _{j=2}^{k}\frac{C}{(1+|z-x_{\varepsilon 1}|)^{4m-\frac{4m\tau _1}{N-2m}+(N-2m-\tau _1)\varepsilon }}\frac{1}{(1+|z-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau }}\\&\le \frac{C}{(1+|z-x_{\varepsilon 1}|)^{\frac{N+6m}{2}+\tau -\frac{4m\tau _1}{N-2m}+(N-2m-\tau _1)\varepsilon }}\\ {}&\quad +\frac{C}{(1+|z-x_{\varepsilon 1}|)^{\frac{N+6m}{2}+\tau -\frac{N+2m}{N-2m}\tau _1+(N-2m-\tau _1)\varepsilon }}\displaystyle \sum _{j=2}^k\frac{1}{|x_{\varepsilon j}-x_{\varepsilon 1}|^{\tau _1}}\\&\le \frac{C}{(1+|z-x_{\varepsilon 1}|)^{\frac{N+6m}{2}+\tau -\frac{N+2m}{N-2m}\tau _1+(N-2m-\tau _1)\varepsilon }}. \end{aligned} \end{aligned}$$

By Lemma A.2, we have

$$\begin{aligned} \begin{aligned}&\quad \displaystyle \int _{\Omega _1}\frac{1}{|y-z|^{N-2m}}Z_{r_\varepsilon , \lambda _\varepsilon }^{m^*-2+\varepsilon }(z)\displaystyle \sum _{j=1}^{k}\frac{1}{(1+|z-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau }}dz\\&\le \displaystyle \int _{\Omega _1}\frac{1}{|y-z|^{N-2m}} \frac{C}{(1+|z-x_{\varepsilon 1}|)^{\frac{N+6m}{2}+\tau -\frac{N+2m}{N-2m}\tau _1+(N-2m-\tau _1)\varepsilon }}\\&\le \frac{C}{(1+|z-x_{\varepsilon 1}|)^{\frac{N+2m}{2}+\tau -\frac{N+2m}{N-2m}\tau _1+(N-2m-\tau _1)\varepsilon }}. \end{aligned} \end{aligned}$$

Thus, choose \(\tau _1\) satisfying \(2m-\frac{N+2m}{N-2m}\tau _1 > 0\) and \(0 < \tau _1 \le \frac{N-2m}{2}\), we obtain that

$$\begin{aligned}&\quad \displaystyle \int _{{\mathbb {R}}^{N}} \frac{1}{|y-z|^{N-2m}}Z_{r_\varepsilon , \lambda _\varepsilon }^{m^*-2+\varepsilon }(z)\displaystyle \sum _{j=1}^{k}\frac{1}{(1+|z-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau }}dz\\&=\displaystyle \sum _{i=1}^k\displaystyle \int _{\Omega _i} \frac{1}{|y-z|^{N-2m}}Z_{r_\varepsilon , \lambda _\varepsilon }^{m^*-2+\varepsilon }(z)\displaystyle \sum _{j=1}^{k}\frac{1}{(1+|z-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau }}dz\\&\le \displaystyle \sum _{i=1}^k\frac{C}{(1+|z-x_{\varepsilon i}|)^{\frac{N+2m}{2}+\tau -\frac{N+2m}{N-2m}\tau _1+(N-2m-\tau _1)\varepsilon }}\\ {}&\le C\sum _{j=1}^{k}\frac{1}{(1+|y-x_{\varepsilon j}|)^{\frac{N-2m}{2}+\tau +\theta }}\text {.} \end{aligned}$$

\(\square \)

We complete the proof of Lemma A.3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Liu, T. Bubble solutions for a supercritical polyharmonic Hénon-type equation. manuscripta math. 167, 37–64 (2022). https://doi.org/10.1007/s00229-020-01266-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-020-01266-3

Mathematics Subject Classification

Navigation