Skip to main content
Log in

Effect of organic cation composition and halogen atom type on 2D-layered organic–inorganic hybrids for luminescent solar concentrator

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Organic–Inorganic hybrids with tunable photoluminescence, high efficiency, and high thermal stability are promising luminophores for luminescent solar concentrators (LSCs). The generation of 2D-layered organic–inorganic hybrids with an intense purplish blue to green fluorescence emission is a topic of intense current interest. In this study, we present the synthesis and investigate the six new derivatives of layered perovskites: UV sensitizer (C4H9NH3)2PbX4 and (C6H5(CH2)2NH3)2PbX4 with X = Cl, Br and I, in order to produce LSCs. One of the most problematic loss mechanisms in the LSCs is the reabsorption of the emitted light from the luminophores. The 2D- layered organic–inorganic hybrids offer a solution due to their tunable absorption and emission wavelength, through the variation of organic cation and halogen atoms, and the apparent large Stokes shift resulting in the improvement of the optical properties of LSCs. Also, the LSC performance was evaluated by a thorough optical and photovoltaic characterization. The obtained results reveal that the investigation of the appropriate organic cation and suitable halogen atom in the synthesized 2D- layered hybrids, as well as the concentration of the hybrids in the LSCs, are necessary to find a suitable condition for an effective LSC. It was found that (C4H9NH3)2PbBr4-layered hybrid, with 1.6 wt% layered hybrid concentration in polymethyl methacrylate (PMMA), leads to the highest efficiency with the least reabsorption effect in the LSC. The efficiency of the coated Si PV cell is increased by about 50%, compared to an uncoated cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Leijtens, B. Lauber, G.E. Eperon, S.D. Stranks, H.J. Snaith, J. Phys. Chem. Lett. 5, 1096 (2014)

    CAS  Google Scholar 

  2. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, H. Snaith, Science 342, 341 (2013)

    CAS  Google Scholar 

  3. G. Xing, N. Mathews, S.S. Lim, N. Yantara, X. Liu, D. Sabba, M. Grätzel, S. Mhaisalkar, T.C. Sum, Nat. Mater. 13, 476 (2014)

    CAS  Google Scholar 

  4. W. Nie, H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch, G. Gupta, J.J. Crochet, M. Chhowalla, S. Tretiak, M.A. Alam, H.L. Wang, D. Mohite, Science 347, 522 (2015)

    CAS  Google Scholar 

  5. S. Ahmadi Kandjani, S. Mirershadi A. Nikniazi, in Solar Cells-New Approaches and Reviews, Kosyachenko, L. A., ed. (InTech, 2015), pp. 223−246

  6. Q. Tai, K.C. Tang, F. Yan, Energy Environ. Sci. 12, 2375 (2019)

    CAS  Google Scholar 

  7. S. Akin, Y. Altintas, E. Mutlugun, S. Sonmezoglu, Nano Energy 60, 557 (2019)

    CAS  Google Scholar 

  8. S. Akin, E. Akman, S. Sonmezoglu, Adv. Funct. Mater. 30, 2002964 (2020)

    CAS  Google Scholar 

  9. S. Sonmezoglu, S. Akin, Nano Energy 76, 105127 (2020)

    CAS  Google Scholar 

  10. S. Akin, A.C.S. Appl, Mater. Interfaces 11(43), 39998 (2019)

    CAS  Google Scholar 

  11. S. Akin, Y. Liu, M. Ibrahim Dar, S.M. Zakeeruddin, M. Grätzel, S. Turand, S. Sonmezoglu, J. Mater. Chem. A 6, 20327 (2018)

    CAS  Google Scholar 

  12. G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 3, 8970 (2015)

    CAS  Google Scholar 

  13. E.T. Hoke, D.J. Slotcavage, E.R. Dohner, A.R. Bowring, H.I. Karunadasa, M.D. McGehee, Chem. Sci. 6, 613 (2015)

    CAS  Google Scholar 

  14. D.J. Slotcavage, H.I. Karunadasa, M.D. McGehee, ACS Energy Lett. 1, 1199 (2016)

    CAS  Google Scholar 

  15. R.G. Wilks, M. Bär, Nat. Energy 2, 16204 (2017)

    Google Scholar 

  16. T. Leijtens, G.E. Eperon, S. Pathak, A. Abate, M.M. Lee, H.J. Snaith, Nat. Commun. 4, 2885 (2013)

    Google Scholar 

  17. N.G. Park, M. Gratzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 1, 16152 (2016)

    CAS  Google Scholar 

  18. B. Yang, O. Dyck, W. Ming, M.H. Du, S. Das, C.M. Rouleau, G. Duscher, D.B. Geohegan, K. Xiao, A.C.S. Appl, Mater. Interfaces 8, 32333 (2016)

    CAS  Google Scholar 

  19. S. Yang, W. Liu, L. Zuo, X. Zhang, T. Ye, J. Chen, C.Z. Li, G. Wu, H. Chen, J. Mater. Chem. A 4, 9430 (2016)

    CAS  Google Scholar 

  20. C. Huang, W. Fu, C.Z. Li, Z. Zhang, W. Qiu, M. Shi, P. Heremans, A.K. Jen, H. Chen, J. Am. Chem. Soc. 138, 2528 (2016)

    CAS  Google Scholar 

  21. D. Koushik, W.J.H. Verhees, Y.H. Kuang, S. Veenstra, D. Zhang, M.A. Verheijen, M. Creatore, R.E.I. Schropp, Energy Environ. Sci. 10, 91 (2017)

    CAS  Google Scholar 

  22. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, Angew. Chem. Int. Ed. Engl. 53, 11232 (2014)

    CAS  Google Scholar 

  23. D.H. Cao, C.C. Stoumpos, O.K. Farha, J.T. Hupp, M.G. Kanatzidis, J. Am. Chem. Soc. 137, 7843 (2015)

    CAS  Google Scholar 

  24. J. Yan, W. Qiu, G. Wu, P. Heremans, H. Chen, J. Mater. Chem. A 6, 11063 (2018)

    CAS  Google Scholar 

  25. J. Calabrese, N.L. Jones, R.L. Harlow, N. Herron, D.L. Thorn, Y. Wan, J. Am. Chem. Soc. 113, 2328 (1991)

    CAS  Google Scholar 

  26. C. Ma, D. Shen, T.W. Ng, M.F. Lo, C.S. Lee, Adv. Mater. 30, 1800710 (2018)

    Google Scholar 

  27. I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, Angew. Chem. 126, 11414 (2014)

    Google Scholar 

  28. P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu, F. Li, X. Liu, X. Hu, G. Shao, Y. Song, Adv. Mater. 30, 1805323 (2018)

    Google Scholar 

  29. B.E. Cohen, M. Wierzbowska, L. Etgar, Adv. Funct. Mater 27, 1604733 (2017)

    Google Scholar 

  30. E. Shi, Y. Gao, B.P. Finkenauer, A. Aidan, H. Coffey, L. Dou, Chem. Soc. Rev. 47, 6013 (2018)

    Google Scholar 

  31. W.H. Weber, J. Lambe, Appl. Opt. 15, 2299 (1979)

    Google Scholar 

  32. G.D. Gutierrez, I. Coropceanu, M.G. Bawendi, T.M. Swager, Adv. Mater. 28, 497 (2016)

    CAS  Google Scholar 

  33. G. Santhosh, B.S. Madhukar, G.P. Nayaka, B. Siddaramaiah, J. Mater. Sci. 29, 6720 (2018)

    CAS  Google Scholar 

  34. F. Purcell-Milton, Y.K. Gun’ko, J. Mater. Chem. 22, 16687 (2012)

    CAS  Google Scholar 

  35. S. Mirershadi, S. Ahmadi Kandjani, Dyes Pigm. 120, 15 (2015)

    CAS  Google Scholar 

  36. S. Kalytchuk, S. Gupta, O. Zhovtiuk, A. Vaneski, S.V. Kershaw, H.Y. Fu, Z.Y. Fan, E.C.H. Kwok, C.F. Wang, W.Y. Teoh, A.L. Rogach, J. Phys. Chem. C 118, 16393 (2014)

    CAS  Google Scholar 

  37. L. Da, D. Cairong, Sh. Hui, L. Yong, Z. Yueli, L. Ming, Y. Jin, J. Phys. D 43, 015101 (2009)

    Google Scholar 

  38. C. Li, W. Chen, D. Wu, D.H. Quan, Z.M. Zhou, J.J. Hao, J. Qin, Y.W. Li, Z.B. He, K. Wang, Sci. Rep. 5, 17777 (2015)

    CAS  Google Scholar 

  39. M.G. Debije, P.P.C. Verbunt, Adv. Energy Mater. 2, 12 (2012)

    CAS  Google Scholar 

  40. H. Li, K. Wu, J. Lim, H.J. Song, V.I. Klimov, Nat. Energy 1, 16157 (2016)

    CAS  Google Scholar 

  41. I. Coropceanu, M.G. Bawendi, Nano Lett. 14, 4097 (2014)

    CAS  Google Scholar 

  42. H. Zhao, Y. Zhou, D. Benetti, D. Ma, F. Rosei, Nano Energy 37, 214 (2017)

    CAS  Google Scholar 

  43. Y. Zhou, D. Benetti, Z. Fan, H. Zhao, D. Ma, A.O. Govorov, A. Vomiero, F. Rosei, Adv. Energy Mater. 6, 1501913 (2016)

    Google Scholar 

  44. H. Zhou, D. Benetti, L. Jin, Y. Zhou, F. Rosei, A. Vomiero, Small 12, 5354 (2016)

    Google Scholar 

  45. S. Mirershadi, F. Sattari, M. Mohamadi-Saridaragh, Sol. Energy Mater. Sol. Cells. 186, 365 (2018)

    CAS  Google Scholar 

  46. F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K.A. Velizhanin, N.S. Makarov, R. Simonutti, V.I. Klimov, S. Brovelli, Nat. Nanotechnol. 10, 878 (2015)

    CAS  Google Scholar 

  47. F. Meinardi, H. McDaniel, F. Carulli, A. Colombo, K.A. Velizhanin, N.S. Makarov, R. Simonutti, V.I. Klimov, S. Brovelli, Nat. Photon. 8, 392 (2014)

    CAS  Google Scholar 

  48. L.R. Bradshaw, K.E.O. Knowles, S. McDowall, D.R. Gamelin, Nano Lett. 15, 1315 (2015)

    CAS  Google Scholar 

  49. R.H. Inman, G.V. Shcherbatyuk, D. Medvedko, A. Gopinathan, S. Ghosh, Opt. Express 19, 24308 (2011)

    CAS  Google Scholar 

  50. I. Coropceanu, A. Rossinelli, J.R. Caram, F.S. Freyria, M.G. Bawendi, ACS Nano 10, 3295 (2016)

    CAS  Google Scholar 

  51. C.S. Erickson, L.R. Bradshaw, S. McDowall, J.D. Gilbertson, D.R. Gamelin, D.L. Patrick, ACS Nano 8, 3461 (2014)

    CAS  Google Scholar 

  52. S.M. El-Bashir, F.M. Barakat, M.S. AlSalhi, J. Lumin. 143, 43 (2013)

    CAS  Google Scholar 

  53. T. Senden, F.T. Rabouw, A. Meijerink, ACS Nano 9, 1801 (2015)

    CAS  Google Scholar 

  54. S.F.H. Correia, V.Z. Bermudez, S.J.L. Ribeiro, P.S. Andre, R.A.S. Ferreira, L.D. Carlos, J. Mater. Chem A 2, 5580 (2014)

    CAS  Google Scholar 

  55. S. Mirershadi, F. Sattari, Sh. Golghasemi-Sorkhabi, A.M. Shokri, Phys. Chem. C 123, 12423 (2019)

    CAS  Google Scholar 

  56. F. Meinardi, Q.A. Akkerman, F. Bruni, S. Park, M. Mauri, Z. Dang, L. Manna, S. Brovelli, ACS Energy Lett. 2, 2368 (2017)

    CAS  Google Scholar 

  57. H. Zhao, D. Benetti, X. Tong, H. Zhang, Y. Zhou, G. Liu, D. Ma, S. Sun, Z.M. Wang, Y. Wang, F. Rosei, Nano Energy 50, 756 (2018)

    CAS  Google Scholar 

  58. E. Bagherzadeh-Khajehmarjan, A. Nikniazi, B. Olyaeefar, S. Ahmadi-Kandjani, J.M. Nunzi, Sol. Energy Mater. Sol. Cells 192, 44 (2019)

    CAS  Google Scholar 

  59. B. Mendewala, K. Nikolaidou, C. Hoffman, S. Sarang, J. Lu, B. Ilan, S. Ghosh, Sol. Energy 183, 392 (2019)

    CAS  Google Scholar 

  60. X. Gao, X. Zhang, W. Yin, H. Wang, Y. Hu, Q. Zhang, Z. Shi, V.L. Colvin, W.W. Yu, Y. Zhang, Adv. Sci. 22, 1900941 (2019)

    Google Scholar 

  61. W. Peng, J. Yin, K.T. Ho, O. Ouellette, M. De-Bastiani, B. Murali, O. El Tall, C. Shen, X. Miao, J. Pan, E. Alarousu, J.H. He, B.S. Ooi, O.F. Mohammed, E. Sargent, O.M. Bakr, Nano Lett. 17, 4759 (2017)

    CAS  Google Scholar 

  62. L. Dou, A.B. Wong, Y. Yu, M. Lai, N. Kornienko, S.W. Eaton, A. Fu, C.G. Bischak, J. Ma, T. Ding, N.S. Ginsberg, L.W. Wang, A.P. Alivisatos, P. Yang, Science 349, 1518 (2015)

    CAS  Google Scholar 

  63. X. Wu, M.T. Trinh, D. Niesner, H. Zhu, Z. Norman, J.S. Owen, O. Yaffe, B.J. Kudisch, X.Y. Zhu, J. Am. Chem. Soc. 137, 2089 (2015)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soghra Mirershadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirershadi, S., Sattari, F. Effect of organic cation composition and halogen atom type on 2D-layered organic–inorganic hybrids for luminescent solar concentrator. J Mater Sci: Mater Electron 32, 12939–12950 (2021). https://doi.org/10.1007/s10854-020-04899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04899-y

Navigation