Skip to main content

Advertisement

Log in

Performance enhancement of a photovoltaic module using solar functional coatings

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The performance of a solar photovoltaic module can be improved with aid to predictive, corrective and preventive maintenance procedures. Most of the solar modules installed in the roof top are under non-maintenance state. For the locations like dusty environments and deserts, the dust accumulation will be more. Hence, it is the major requirement to clean the PV modules which are much costlier to do in regular basis. In this paper, an anti-reflective coating (hydrophilic) is used to deteriorate the losses due to reflectance in a solar PV module and thereby enhancing its efficiency. In addition to it, easy-to-clean coating (super hydrophilic) is used to improve the dust cleaning effectiveness in a solar PV module. The material employed for anti-reflective coating is MgF2 and for easy-to-clean coating is SiO2. Two polycrystalline solar PV modules of 10 Wp capacity with model ADT12AN are connected to similar kind of optimized load of 40 Ω in a field condition. American Standard Testing Methodology (ASTM: E948) is used for standard test measurements. Based on the characteristics of different coating techniques, the optimized coating performance is considered. One module coated with anti-reflective and easy-to-clean coatings is considered for the analysis. The comparative analysis between the modules is undertaken with LABView software. An extensive analysis for module performance validation with experimental setup is carried out to show the effectiveness of the proposed system. From the results, it can be clearly observed that a 2% rise in the overall power performance using anti-reflective coating is achieved. This can lead to an increase in yearly energy output of the solar plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. M.C. Bautista, A. Morales, Silica AR films on glass produced by the sol-gel method. Solar Energy Mater. Solar Cells 80, 217–225 (2003)

    Article  CAS  Google Scholar 

  2. A. Khaligh, O.C. Onar, Energy Harvesting; Solar, Wind & Ocean Energy Conversion System (CRC Press, Boca Raton, 2010).

    Google Scholar 

  3. C.J. Chen, Physics of Solar Energy (Wiley, New York, 2011).

    Book  Google Scholar 

  4. ASTM (American Society for Testing and Materials) Codes and Standards; E2527 - 09, E948 – 09.

  5. P. Nostell, A. Roos, B. Karlsson, Optical and mechanical properties of sol-gel antireflective films for solar energy applications. Thin Solid Films 351, 170–175 (1999)

  6. C. Ballifa, J. Dickerb, D. Borcherta, T. Hofmann, Solar glass with industrial porous SiO2 antireflection coating: measurements of photovoltaic module properties improvement and modelling of yearly energy yield gain. Solar Energy Mater. Solar Cells 82, 331–344 (2004)

    Article  Google Scholar 

  7. Z. Xintong, T. Murakami, A. Fujishima, Sol-gel SiO2/TiO2 bilayer films with self cleaning and anti reflection properties. Solar Energy Mater. Solar Cells 92, 1434–1438 (2008)

  8. Z. Xintong, C. Yang, U. Tartaglino, Development of multi-functional sol-gel coatings: anti reflective with enhanced self cleaning capacity. Solar Energy Mater. Solar Cells 94, 1081–1088 (2010)

  9. M. Cao, X. Song, J. Zhai, J. Wang, Y. Wang, Fabrication of highly antireflective silicon surfaces with superhydrophobicity. J. Phys. Chem. B 110, 13072–13075 (2006)

    Article  CAS  Google Scholar 

  10. M. Ma, R.M. Hill, Superhydrophobic surfaces. Curr. Opin. Colloid Interface Sci. 11, 193–202 (2006)

    Article  CAS  Google Scholar 

  11. Y.C. Chang, G.H. Mei, T.W. Chang, T.J. Wang, D.Z. Linand, C.K. Lee, Design and fabrication of a nanostructured surface combining antireflective and enhanced-hydrophobic effects. Nanotechnology 18, 285303 (2007)

    Article  Google Scholar 

  12. M. Faustini, L. Nicole, C. Boissiere, P. Innocenzi, C. Sanchez, D. Hrosso, Hydrophobic, antireflective, self-cleaning, and antifogging sol-gel coatings: an example of multifunctional nanostructured materials for photovoltaic cells. Chem. Mater. 22, 4406–4413 (2010)

    Article  CAS  Google Scholar 

  13. Z. Liu, X. Zhang, T. Murakami, A. Fujishima, Sol–gel SiO2/TiO2 bilayer films with self-cleaning and antireflection properties. Sol. Energy Mater. Sol. Cells 92, 1434–1438 (2008)

    Article  CAS  Google Scholar 

  14. L.K. Verma, M. Sakhuja, J. Son, A.J. Danner, H. Yang, H.C. Zeng, C.S. Bhatia, Self-cleaning and antireflective packaging glass for solar modules. Renew. Energy 36, 2489–2493 (2011)

    Article  CAS  Google Scholar 

  15. C.-H. Chen, S.-Y. Li, A.S.T. Chiang, A.T. Wu, Y.S. Sun, Scratch-resistant zeolite anti-reflective coating on glass for solar applications. Solar Energy Mater. Solar Cells 95, 1694–1700 (2011)

    Article  CAS  Google Scholar 

  16. J. Son, S. Kunda, L.K. Verma, M. Sakhuja, A.J. Danner, C.S. Bhatia, H. Yang, A practical superhydrophilic self cleaning and AR surface for outdoor PV applications. Sol. Energy Mater. Sol. Cells 98, 46–51 (2012)

    Article  CAS  Google Scholar 

  17. N. Mir, M. Salavati-Niasari, Preparation of TiO2 nanoparticles by using tripodal tetraamine ligands as complexing agent via two-step sol–gel method and their application in dye-sensitized solar cells. Mater. Res. Bull. 48, 1660–1667 (2013)

    Article  CAS  Google Scholar 

  18. O. Amiri, M. Salavati-Niasari, M. Sabet, D. Ghanbari, Synthesis and characterization of CuInS2 microsphere under controlled reaction conditions and its application in low-cost solar cells. Mater. Sci. Semicond. Process. 16, 1485–1494 (2013)

    Article  CAS  Google Scholar 

  19. N. Mir, M. Salavati-Niasari, Photovoltaic properties of corresponding dye sensitized solar cells: effect of active sites of growth controller on TiO2 nanostructures. Sol. Energy 86, 3397–3404 (2012)

    Article  CAS  Google Scholar 

  20. T. Weia, Y. Yanga Performance evaluation of a PV module. PhD thesis.

  21. A. Luque, S. Hegedus, Handbook of PV Science & Engineering (Wiley, England, 2003).

    Google Scholar 

  22. J. Wiles, Photovoltaic Power Systems and the National Electrical Code: Suggested Practices (Sandia National Laboratories, Albuquerque, NM, 1996).

    Book  Google Scholar 

  23. R.A. Messenger, A. Abtahi, Photovoltaic Systems Engineering (CRC Press, Boca Raton, 2017).

    Google Scholar 

  24. Y. Lua, X. Zhanga, J. Huanga, J. Li, T. Weia, P. Lana, Ye. Yanga, H. Xub, W. Song, Investigation on antireflection coatings for Al:ZnO in silicon thin-film solar cells. Optik 124, 3392–3395 (2012)

    Article  Google Scholar 

  25. C. Xin, C. Peng, Xu. Yudong, Wu. Jianqing, Effects of polysiloxane doping on transmittance and durability of sol–gel derived antireflective coatings for photovoltaic glass. Sol. Energy 86, 3345–3352 (2012)

    Article  CAS  Google Scholar 

  26. L. Alves, N. Boling. High-efficiency solar coatings. PhD thesis

  27. S. Grebler, U. Fiedeler, M. Simko, A. Gazso, M. Nentwich, Self Cleaning, Dirt and Water Repellent Coatings on the Basis of Nanotechnology (Nano Trust Dossiers-Institute of Technology Assessment of the Austrian Academy of Sciences, 2010), pp. 1–6

  28. Solar Simulator, Oriel Product Training Manual (NewPort, Stratford, CT), pp. 1–27

  29. C.S. Solanki, Solar Photovoltics; Fundamentals, Technologies & Applications (Prentice-Hall of India Pvt, New Delhi, 2015).

    Google Scholar 

  30. http://www.cea.nic.in/search/pv_power_generation.html

  31. S.A. Sulaiman, H.H. Hussain, N.S.H. Nik Leh, M.S.I. Razali, Effects of dust on the performance of PV panels. World Acad. Sci. Eng. Technol. 58, 588–593 (2011)

    Google Scholar 

Download references

Funding

This study was funded by Science and Engineering Research Board (Grant No. CRD/2018/000075)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Alexander Stonier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, A.K., Stonier, A.A. & Maheswari, Y.U. Performance enhancement of a photovoltaic module using solar functional coatings. J Mater Sci: Mater Electron 32, 1242–1257 (2021). https://doi.org/10.1007/s10854-020-04897-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04897-0

Navigation