Skip to main content

Advertisement

Log in

Effect of polyaniline content on the electrochemical behavior of tin oxide/polyaniline composites by solution mixing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of polyaniline (PANI) nanofibers content on the electrochemical properties of composites based on SnO2 nanoflakes was studied. PANI nanofibers and SnO2 nanoflakes were synthesized and characterized (SEM, BET, FTIR, XPS, and XRD) and mixed in solution at different proportions. The resulting composites were characterized electrochemically (CV, EIS, and GCD) to determine their specific capacitance, electric resistance, and cyclic stability to be used as electrochemical capacitor electrodes (ECs). It was found that the SnO2-PANI-(80/20) composite at 5 mVs−1 exhibited higher specific capacitance (CAS = 1.1 Fg−1) than SnO2 (CAS = 0.99 Fg−1); meanwhile, SnO2-PANI-(95/5) at 100 mVs−1 exhibited higher capacitance (CAS = 0.66 Fg−1) than PANI (CAS = 0.42 Fg−1). The GCD results indicate that SnO2, PANI, and their composites presented coulombic efficiencies higher than 90% after 5000 cycles. Also, the highest initial capacitance (C = 0.4 Fg−1, at 2 mAcm−2) was found for SnO2-PANI-(80/20), and the highest final capacitance (C = 0.28 Fg−1, 5000 cycles at 2 mAcm−2) was for SnO2-PANI-(95/5). Finally, PEIS behavior was studied, and the equivalent circuits were proposed, resulting that the contact resistance to charge transfer (RCT) of composites (RCT = 1.61–2.28 Ω) were lower than precursors (SnO2, RCT = 3.66 Ω; PANI, RCT = 4.47 Ω). In addition, it was observed that the capacitance of composites increased, and resistance to charge transfer decreased with the PANI content. Electrode material presents a synergetic effect promoted by the appropriate mixing in solution along with the nanoscale morphologies of the components showing improved specific capacitance, and low both contact and charge transfer resistances, with high coulombic efficiencies (> 90% after 5 k cycles).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Poonam, A. Sharma, S.K. Arora, J. Tripathi, Energy Storage 21, 801 (2019)

    Article  Google Scholar 

  2. J.B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 135, 1167 (2013)

    Article  CAS  Google Scholar 

  3. R. Van Noorden, Nature 507, 26 (2014)

    Article  CAS  Google Scholar 

  4. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Mater. Today 18, 252 (2015)

    Article  CAS  Google Scholar 

  5. S.M. Afif, A.T. Rahman, J. Azad, M.A. Zaini, A.K. Islan, J. Azad, Energy Storage 25, 100852 (2019)

    Article  Google Scholar 

  6. G.Z. Chen, Prog. Nat. Sci. Mater. Int. 23, 245 (2013)

    Article  CAS  Google Scholar 

  7. G.Z. Chen, Int. Mater. Rev. 62, 173 (2017)

    Article  CAS  Google Scholar 

  8. V.H. Nguyen, J.J. Shim, Synth. Met. 207, 110 (2015)

    Article  CAS  Google Scholar 

  9. R. Dubey, V. Guruviah, Ionics (Kiel). 25, 1419 (2019)

    Article  CAS  Google Scholar 

  10. Y. Jin, M. Jia, Colloids Surf. A 464, 17 (2015)

    Article  CAS  Google Scholar 

  11. H. Wang, J. Lin, Z.X. Shen, J. Sci. Adv. Mater. Devices 1, 225 (2016)

    Article  Google Scholar 

  12. S.S. Patil, K.V. Harpale, S.P. Koiry, K.R. Patil, D.K. Aswal, M.A. More, J. Appl. Polym. Sci. 132, 41401 (2015)

    Article  CAS  Google Scholar 

  13. L. Wang, X. Lu, S. Lei, Y. Song, J. Mater. Chem. A 2, 4491 (2014)

    Article  CAS  Google Scholar 

  14. Z.U. Khan, A. Kausar, H. Ullah, A. Badshah, W.U. Khan, J. Plast. Film Sheeting. 55, 336 (2016)

    Article  CAS  Google Scholar 

  15. J. Yan, T. Wei, B. Shao, Z. Fan, W. Qian, M. Zhang, F. Wei, Carbon 48, 487 (2010)

    Article  CAS  Google Scholar 

  16. K. Wang, L. Li, T. Zhang, Z. Liu, Energy 70, 612 (2014)

    Article  CAS  Google Scholar 

  17. G.-T. Xia, C. Li, K. Wang, L.-W. Li, Sci. Adv. Mater. 11, 1079 (2019)

    Article  CAS  Google Scholar 

  18. W. Kai, L. Liwei, X. Wen, Z. Shengzhe, L. Yong, Z. Hongwei, S. Zongqiang, Int. J. Electrochem. Sci. 12, 8306 (2017)

    Article  CAS  Google Scholar 

  19. M.S.A. Sher Shah, J. Lee, A.R. Park, Y. Choi, W.J. Kim, J. Park, C.H. Chung, J. Kim, B. Lim, P.J. Yoo, Electrochim. Acta 224, 201 (2017)

    Article  CAS  Google Scholar 

  20. H. Ding, H. Jiang, Z. Zhu, Y. Hu, F. Gu, C. Li, Electrochim. Acta 157, 205 (2015)

    Article  CAS  Google Scholar 

  21. C. Wang, Y. Li, Y.-S. Chui, Q.-H. Wu, X. Chen, W. Zhang, Nanoscale 5, 10599 (2013)

    Article  CAS  Google Scholar 

  22. A. Eftekhari, Energy Storage Mater. 7, 157 (2017)

  23. R. Liang, H. Cao, D. Qian, J. Zhang, M. Qu, J. Mater. Chem. 21, 17654 (2011)

    Article  CAS  Google Scholar 

  24. H. Notohara, K. Urita, H. Yamamura, I. Moriguchi, Sci. Rep. 8, 1 (2018)

    Article  CAS  Google Scholar 

  25. B. Akinwolemiwa, C. Peng, G.Z. Chen, J. Electrochem. Soc. 162, A5054 (2015)

    Article  CAS  Google Scholar 

  26. X. Feng, Y. Zhang, L. Kang, L. Wang, C. Duan, K. Yin, J. Pang, K. Wang, Front. Chem. Sci. Eng. (2020). https://doi.org/10.1007/s11705-020-1956-3

    Article  Google Scholar 

  27. A. Manthiram, J. Phys. Chem. Lett. 2, 176 (2011)

    Article  CAS  Google Scholar 

  28. R. Kamali, D.J. Fray, Rev. Adv. Mater. Sci. 27, 14 (2011)

    CAS  Google Scholar 

  29. A.K. Cuentas-Gallegos, D. Pacheco-Catalán, M. Miranda-Hernández, in Mater. Sustain. Energy Appl., ed. by D. Muñoz-Rojas, X. Moya (Jenny Stanford Publishing, New York, 2016), p. 351

  30. W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, RSC. Adv. 2, 10268 (2012)

    Article  CAS  Google Scholar 

  31. W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, J. Liu, Adv. Sci. 4, 16005391 (2017)

    Article  CAS  Google Scholar 

  32. Y. Li, Y. Guo, R. Tan, P. Cui, Y. Li, W. Song, Mater. Lett. 63, 2085 (2009)

    Article  CAS  Google Scholar 

  33. Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, ACS Nano 4, 1963 (2010)

    Article  CAS  Google Scholar 

  34. J. Huang, R.B. Kaner, J. Am. Chem. Soc. 126, 851 (2004)

    Article  CAS  Google Scholar 

  35. Y.S. Choudhary, L. Jothi, G. Nageswaran, Electrochemical characterization, in Spectroscopic Methods for Nanomaterials Characterization. ed. by S. Thomas, R. Thomas, A.K. Zachariah, R.K. Mishra (Elsevier, New York, 2017), p. 19

    Chapter  Google Scholar 

  36. W. Liu, X. Yan, J. Lang, C. Peng, Q. Xue, J. Mater. Chem. 22, 17245 (2012)

    Article  CAS  Google Scholar 

  37. A. Ramadoss, S.J. Kim, Carbon 63, 434 (2013)

    Article  CAS  Google Scholar 

  38. J. Yan, J. Liu, Z. Fan, T. Wei, L. Zhang, Carbon 50, 2179 (2012)

    Article  CAS  Google Scholar 

  39. V. Parra-Elizondo, B. Escobar-Morales, E. Morales, D. Pacheco-Catalán, J. Solid State Electrochem. 21, 975 (2017)

    Article  CAS  Google Scholar 

  40. V. Ratchagar, K. Jagannathan, Mater. Res. Innov. 21, 195 (2017)

    Article  CAS  Google Scholar 

  41. M. Hamanaka, K. Imakawa, M. Yoshida, Z. Zhao, S. Yin, X. Wu, Y. Huang, J. Wu, T. Sato, J. Porous Mater. 23, 1189 (2016)

    Article  CAS  Google Scholar 

  42. Q. Sun, X. Kong, W. Liu, B. Xu, P. Hu, Z. Gao, Y. Huang, J. Alloy. Compd. 831, 154677 (2020)

    Article  CAS  Google Scholar 

  43. H.B. Wu, J.S. Chen, X.W. Lou, H.H. Hng, J. Phys. Chem. C 115, 24605 (2011)

    Article  CAS  Google Scholar 

  44. D. Zhang, D. Wang, X. Zong, G. Dong, Y. Zhang, Sens. Actuator B 262, 531 (2018)

    Article  CAS  Google Scholar 

  45. K. Ariga, A. Vinu, Y. Yamauchi, Q. Ji, J.P. Hill, Bull. Chem. Soc. Jpn. 85, 1 (2012)

    Article  CAS  Google Scholar 

  46. H. Wang, A.L. Rogach, Chem. Mater. 26, 123 (2014)

    Article  CAS  Google Scholar 

  47. D.N. Srivastava, S. Chappel, O. Palchik, A. Zaban, A. Gedanken, Langmuir 18, 4160 (2002)

    Article  CAS  Google Scholar 

  48. H. Kim, M. Kim, S. Kim, Y. Kim, J. Choi, K. Park, RSC Adv. 10, 10519 (2020)

    Article  CAS  Google Scholar 

  49. L. Zhang, Y. Yin, Sens. Actuator B 185, 594 (2013)

    Article  CAS  Google Scholar 

  50. J.R. Sohn, H.D. Park, D.D. Lee, Appl. Surf. Sci. 161, 78 (2000)

    Article  CAS  Google Scholar 

  51. W. Wan, Y. Li, X. Ren, Y. Zhao, F. Gao, H. Zhao, Nanomaterials 8, 112 (2018)

    Article  CAS  Google Scholar 

  52. J. Huang, K. Yu, C. Gu, M. Zhai, Y. Wu, M. Yang, J. Liu, Sens. Actuator B 147, 467 (2010)

    Article  CAS  Google Scholar 

  53. Y. Masuda, in Nanofabrication. ed. by Y. Masuda (IntechOpen, Rijeka, 2011), p. 99

    Chapter  Google Scholar 

  54. S.A. Saleh, A.A. Ibrahim, S.H. Mohamed, Acta Phys. Pol. A 129, 1220 (2016)

    Article  CAS  Google Scholar 

  55. M. Karpuraranjith, S. Thambidurai, Synth. Met. 229, 100 (2017)

    Article  CAS  Google Scholar 

  56. B. He, Q. Tang, M. Wang, H. Chen, S. Yuan, ACS Appl. Mater. Interfaces 6, 8230 (2014)

    Article  CAS  Google Scholar 

  57. H. Liu, B.H. Liu, Z.P. Li, Solid State Ion. 294, 6 (2016)

    Article  CAS  Google Scholar 

  58. X. Wang, Z. Zhang, X. Yan, Y. Qu, Y. Lai, J. Li, Electrochim. Acta 155, 54 (2015)

    Article  CAS  Google Scholar 

  59. S. Bera, S. Kundu, H. Khan, S. Jana, J. Alloy. Compd. 744, 260 (2018)

    Article  CAS  Google Scholar 

  60. M.A. Stranick, A. Moskwa, Surf. Sci. Spectra 2, 50 (1993)

    Article  CAS  Google Scholar 

  61. C. Wang, G. Du, K. Ståhl, H. Huang, Y. Zhong, J.Z. Jiang, J. Phys. Chem. C 116, 4000 (2012)

    Article  CAS  Google Scholar 

  62. B. Sreedhar, M. Sairam, D.K. Chattopadhyay, P.P. Mitra, D.V. Mohan Rao, J. Appl. Polym. Sci. 101, 499 (2006)

    Article  CAS  Google Scholar 

  63. H.E. Katz, P.C. Searson, T.O. Poehler, J. Mater. Res. 25, 1561 (2010)

    Article  CAS  Google Scholar 

  64. H. Wang, Y. Wang, J. Xu, H. Yang, C.S. Lee, A.L. Rogach, Langmuir 28, 10597 (2012)

    Article  CAS  Google Scholar 

  65. H. Köse, A.O. Aydin, H. Akbulut, Acta Phys. Pol. A 125, 345 (2014)

    Article  CAS  Google Scholar 

  66. C. Wang, Y. Zhou, M. Ge, X. Xu, Z. Zhang, J.Z. Jiang, J. Am. Chem. Soc. 132, 46 (2010)

    Article  CAS  Google Scholar 

  67. S. Das, V. Jayaraman, Prog. Mater. Sci. 66, 112 (2014)

    Article  CAS  Google Scholar 

  68. J. Wittkamper, Z. Xu, B. Kombaiah, F. Ram, M. De Graef, J.R. Kitchin, G.S. Rohrer, P.A. Salvador, Cryst. Growth Des. 17, 3929 (2017)

    Article  CAS  Google Scholar 

  69. X. Sheng, W. Cai, L. Zhong, D. Xie, X. Zhang, Ind. Eng. Chem. Res. 55, 8576 (2016)

    Article  CAS  Google Scholar 

  70. A. Abdolahi, E. Hamzah, Z. Ibrahim, S. Hashim, Materials (Basel). 5, 1487 (2012)

    Article  CAS  Google Scholar 

  71. A. Sanches, J.M.S. Da Silva, J.M.D.O. Ferreira, J.C. Soares, A.L. Dos Santos, G. Trovati, E.G.R. Fernandes, Y.P. Mascarenhas, J. Mol. Struct. 1074, 732 (2014)

    Article  CAS  Google Scholar 

  72. A. Rahy, D.J. Yang, Mater. Lett. 62, 4311 (2008)

    Article  CAS  Google Scholar 

  73. K. Lee, S. Cho, S.H. Park, A.J. Heeger, C.W. Lee, S.H. Lee, Nature 441, 65 (2006)

    Article  CAS  Google Scholar 

  74. S. Bhadra, D. Khastgir, Polym. Test. 27, 851 (2008)

    Article  CAS  Google Scholar 

  75. C. Peng, D. Hu, G.Z. Chen, Chem. Commun. 47, 4105 (2011)

    Article  CAS  Google Scholar 

  76. L.S. Roselin, R.S. Juang, C. Te Hsieh, S. Sagadevan, A. Umar, R. Selvin, H.H. Hegazy, Materials (Basel). 12, 1229 (2019)

    Article  CAS  Google Scholar 

  77. U. Retter, H. Lohse, in Electroanalytical Methods, ed. by Scholz F. et al. (eds) (Springer, Berlin, Heidelberg, 2010), p. 159

    Chapter  Google Scholar 

  78. D. Pletcher, R. Greff, R. Peat, L.M. Peter, J. Robinson, Instrumental Methods in Electrochemistry, 1st edn. (Woodhead Publishing Limited, Oxford, 2001), pp. 251–269

    Book  Google Scholar 

  79. J. Bard, L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, 2nd edn. (Wiley, Hoboken, 2001), pp. 368–388

    Google Scholar 

  80. E. Pacheco-Catalán, M.A. Smit, E. Morales, Int. J. Electrochem. Sci. 6, 78 (2011)

    Google Scholar 

Download references

Acknowledgements

The technical support from Santiago Duarte-Aranda (SEM) is highly appreciated. The XRD and XPS analyzes were performed at the National Laboratory of Nano and Biomaterials (Financed by Fomix-Yucatán and Conacyt-Mexico), Unit CINVESTAV-IPN Mérida. The authors thank Dr. Patricia Quintana for getting access to LANNBIO and M.S. Daniel Aguilar Treviño and Wilian Cauich Ruiz for the technical support in the XRD and XPS analysis, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge Alonso Uribe-Calderon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís-Méndez, L.S., Baas-López, J.M., Pacheco-Catalán, D.E. et al. Effect of polyaniline content on the electrochemical behavior of tin oxide/polyaniline composites by solution mixing. J Mater Sci: Mater Electron 32, 299–312 (2021). https://doi.org/10.1007/s10854-020-04781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04781-x

Navigation