Skip to main content
Log in

Study on the Coupling Behavior and Micro-Mechanism of Solidification and Hot Tearing of Mg–xZn–2xGd Alloys

  • Published:
International Journal of Metalcasting Aims and scope Submit manuscript

Abstract

Gd has higher solid solubility than Y in Mg, which has a greater influence on the mechanical properties of the alloy, but there is little research on its hot tearing. In this paper, the coupling behavior of solidification and hot tearing of Mg–xZn–2xGd (x = 0.5, 1, 1.5, 2 at.%) alloy was studied, and its micro-mechanism was revealed. It is found that the microstructure of Mg–2xGd–xZn alloy is composed of α-Mg, LPSO and W phase. With the increase of x, α-Mg grain is refined, the second phase content is increased, and the hot tearing susceptibility is decreased. Under the same composition, Gd has a better effect on reducing the hot tearing tendency than Y. Further studies show that with the increase of x, the relative content of residual liquid phase between α-Mg grains increases after crystallization, and its feeding ability to local shrinkage of solid phase is enhanced. In addition, the morphology of LPSO precipitated along the grain boundary is wedged into both sides of α-Mg matrix, which is considered to be helpful to prevent the propagation of hot cracking along the grain boundary, which is another important reason to reduce the hot cracking sensitivity of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. L. Zhou, Y.D. Huang, P.L. Mao, Influence of composition on hot tearing in binary Mg–Zn alloys. Int. J. Cast Met. Res. 24(3–4), 170–176 (2011)

    Article  Google Scholar 

  2. Z.Q. Wei, Y. Wang, Z. Liu, Effects of Zn and Y on hot-tearing susceptibility of Mg–xZn–2xY alloys. J. Mater. Sci. Technol. 34(16), 1–7 (2018)

    Article  Google Scholar 

  3. J.F. Song, F.S. Pan, B. Jiang, A review on hot tearing of magnesium alloys. J. Magnes. Alloys 8(3), 151–172 (2016)

    Article  Google Scholar 

  4. Z.P. Luo, S.Q. Zhang, High-resolution electron microscopy on the X-Mg12ZnY phase in a high strength Mg–Zn–Zr–Y magnesium alloy. J. Mater. Sci. Lett. 19(9), 813–815 (2000)

    Article  CAS  Google Scholar 

  5. X. Shi, Y. Long, H. Zhang et al., Role of LPSO phase in crack propagation behavior of an as-cast Mg–Y–Zn Alloy Subjected to dynamic loadings. J. Mater. 12(3), 498 (2019)

    Article  CAS  Google Scholar 

  6. Y. Kawamura, M. Yamasaki, Formation and mechanical properties of Mg97Zn1RE2 alloys with long-period stacking ordered structure. J. Mater. Trans. 48(11), 2986 (2007)

    Article  CAS  Google Scholar 

  7. S. Yoshimoto, M. Yamasaki, Y. Kawamura, Microstructure and mechanical properties of extruded Mg–Zn–Y alloys with 14H long period ordered structure. Mater. Trans. 47(4), 959 (2006)

    Article  CAS  Google Scholar 

  8. B. Chen, D.L. Lin, X.Q. Zeng et al., Effects of yttrium and zinc addition on the microstructure and mechanical properties of Mg–Y–Zn alloys. J. Mater. Sci. 45(9), 2510–2517 (2010)

    Article  CAS  Google Scholar 

  9. B. Chen, D.L. Lin, X.Q. Zeng et al., Microstructure and mechanical properties of ultrafine grained Mg97Y2Zn1 alloy processed by equal channel angular pressing. J. Alloys Compd. 440(1–2), 98 (2007)

    Google Scholar 

  10. Y.J. Wu, D.L. Lin, X.Q. Zeng et al., Formation of a lamellar 14H-type long period stacking ordered structure in an as-cast Mg–Gd–Zn–Zr alloy. J. Mater. Sci. 44(6), 1607–1612 (2009)

    Article  CAS  Google Scholar 

  11. W.J. Ding, Y.J. Wu, L.M. Peng et al., Formation of 14H-type long period stacking orde red structure in the as-cast and solid-solution-treated Mg–Gd–Zn–Zr alloys. J. Mater. Res. 24(5), 1842–1854 (2009)

    Article  CAS  Google Scholar 

  12. J. Li, Z. He, P. Fu et al., Heat treatment and mechanical properties of a high-strength cast Mg–Gd–Zn alloy. Mater. Sci. Eng. A 651, 745–752 (2016)

    Article  CAS  Google Scholar 

  13. Z. Liu, S.B. Zhang, P.L. Mao et al., Effects of Y on hot tearing formation mechanism of Mg–Zn–Y–Zr alloys. J. Mater. Sci. Technol. 30(10), 1214–1222 (2014)

    Article  CAS  Google Scholar 

  14. Z. Wang, Y.Z. Li, F. Wang et al., Hot tearing susceptibility of Mg–xZn–2Y alloys. Trans. Nonferrous Met. Soc. China 26, 3115–3122 (2016)

    Article  CAS  Google Scholar 

  15. H. Liu, W.F. Xu, N.C. Wilson et al., Formation of and interaction between β’ and β1 phases in a Mg–Gd alloy. J. Alloys Compd. 712, 334–344 (2017)

    Article  CAS  Google Scholar 

  16. S.Q. Yin, Z.Q. Zhang, X. Liu et al., Effects of Zn/Gd ratio on the microstructures and mechanical properties of Mg–Zn–Gd–Zr alloys. Mater. Sci. Eng. A 695, 135–143 (2017)

    Article  CAS  Google Scholar 

  17. Y.J. Wu, L.M. Peng, X.Q. Zeng et al., A high-strength extruded Mg–Gd–Zn–Zr alloy with superplasticity. J. Mater Res. 24(12), 3596–3602 (2009)

    Article  CAS  Google Scholar 

  18. J.F. Song, Z. Wang, Y.D. Huang et al., Hot tearing susceptibility of Mg–Ca binary alloys. Metall. Mater. Trans. A 46(12), 6003–6017 (2015)

    Article  CAS  Google Scholar 

  19. G. Cao, I. Haygood, S. Kou, Onset of hot tearing in ternary Mg–Al–Sr alloy casting. Metall. Mater. Trans. A 41, 2139–2150 (2010)

    Article  Google Scholar 

  20. Z.H. Huang, S.M. Liang, R.S. Chen et al., Solidification pathways and constituent phases of Mg–Zn–Y–Zr alloys. J. Alloys Compd. 468, 170–178 (2009)

    Article  CAS  Google Scholar 

  21. D. Emadi, L.V. Whiting, S. Nafisi et al., Applications of thermal analysis in quality control of solidification processes. J. Therm. Anal. Calorim. 81, 235–242 (2005)

    Article  CAS  Google Scholar 

  22. H. Cruz, C. Gonzalez, A. Juárez et al., Quantification of the microconstituents formed during solidification by Newton thermal analysis method. J. Mater. Process. Technol. 178, 128–134 (2006)

    Article  CAS  Google Scholar 

  23. Z. Wang, Y. Li, F. Wang et al., Effect of Cu additions on microstructure, mechanical properties and hot-tearing susceptibility of Mg–6Zn–0.6Zr alloys. J. Mater. Eng. Perform. 25, 5530–5539 (2016)

    Article  CAS  Google Scholar 

  24. L. Zhou, Z. Liu, Y.D. Huang et al., Prediction of hot tearing susceptibility for Mg–Zn–(Al) alloys. Adv. Mater. Res. 509, 138–146 (2012)

    Article  CAS  Google Scholar 

  25. Z. Wang, Y.D. Huang, A. Srinivasan et al., Hot tearing susceptibility of binary Mg–Y alloy castings. Mater. Des. 47, 90–100 (2013)

    Article  CAS  Google Scholar 

  26. X. Du, F. Wang, Z. Wang et al., Hot tearing susceptibility of AXJ530 alloy under low-frequency alternating magnetic field. Acta Metall. Sinica. 33, 1259–1270 (2020)

    Article  CAS  Google Scholar 

  27. Z. Wei, S. Liu, Z. Liu et al., Effects of Zn content on hot tearing susceptibility of Mg–7Gd–5Y–0.5Zr alloy. Metals-Open Access Metall. J. 10, 414 (2020)

    CAS  Google Scholar 

  28. Z. Zhou, Z. Liu, Y. Wang et al., Investigations on the effect of grain size on hot tearing susceptibility of MgZn1Y2 alloy. J. Mater. Res. Express 5, 5 (2018)

    Google Scholar 

  29. Z. Wang, J. Song, Y.D. Huang et al., An investigation on hot tearing of Mg–4.5Zn–(0.5Zr) alloys with Y additions. Metall. Mater. Trans. A 46, 2108–2118 (2015)

    Article  CAS  Google Scholar 

  30. H. Liu, J. Ju, X. Yang et al., A two-step dynamic recrystallization induced by LPSO phases and its impact on mechanical property of severe plastic deformation processed Mg97Y2Zn1 alloy. J. Alloys Compd. 704, 509–517 (2017)

    Article  CAS  Google Scholar 

  31. K. Hagihara, A. Kinoshita, Y. Sugino et al., Effect of long-period stacking ordered phase on mechanical properties of Mg97Zn1Y2 extruded alloy. Acta Mater. 58(19), 6282–6293 (2010)

    Article  CAS  Google Scholar 

  32. H.Y. Qi, G.X. Huang, H. Bo et al., Experimental investigation and thermodynamic assessment of the Mg–Zn–Gd system focused on Mg-rich corner. J. Mater. Sci. 47(3), 1319–1330 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from High level innovation team of Liaoning Province (XLYC1908006), Innovation Talent Program in Science and Technology for Young and Middle-aged Scientists of Shenyang (No. RC.180111), Project of Liaoning Education Department (No. LQGD2019002 and LJGD2019004), Liaoning nature fund guidance plan (No. 2019-ZD-0210) and Liaoning Revitalization Talents Program (No. XLYC1807021 and 1907007), Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science (2019JH3/30100014), National Key Research and Development Programs (SQ2020YFC200162-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shimeng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, X., Liu, S., Zhou, L. et al. Study on the Coupling Behavior and Micro-Mechanism of Solidification and Hot Tearing of Mg–xZn–2xGd Alloys. Inter Metalcast 15, 1175–1183 (2021). https://doi.org/10.1007/s40962-020-00541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40962-020-00541-z

Keywords

Navigation