Skip to main content
Log in

A Fuzzy C-Means Clustering Algorithm Based on Spatial Context Model for Image Segmentation

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

An improved Fuzzy C-Means (FCM) algorithm, which is called Reliability-based Spatial context Fuzzy C-Means (RSFCM), is proposed for image segmentation in this paper. Aiming to improve the robustness and accuracy of the clustering algorithm, RSFCM integrates neighborhood correlation model with the reliability measurement to describe the spatial relationship of the target. It can make up for the shortcomings of the known FCM algorithm which is sensitive to noise. Furthermore, RSFCM algorithm preserves details of the image by balancing the insensitivity of noise and the reduction of edge blur using a new fuzzy measure indicator. Experimental data consisting of a synthetic image, a brain Magnetic Resonance (MR) image, a remote sensing image, and a traffic sign image are used to test the algorithm’s performance. Compared with the traditional fuzzy C-means algorithm, RSFCM algorithm can effectively reduce noise interference, and has better robustness. In comparison with state-of-the-art fuzzy C-means algorithm, RSFCM algorithm could improve pixel separability, suppress heterogeneity of intra-class objects effectively, and it is more suitable for image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lu, Z.Y., Qiu, Y.N., Zhan, T.M.: Neutrosophic c-means clustering with local information and noise distance-based kernel metric image segmentation. J. Vis. Commu. Image Represent. 58, 269–276 (2019)

    Article  Google Scholar 

  2. Shafiullah, S., Asad, M., Kwang, N.C.: Fuzzy c-means clustering based active contour model driven by edge scaled region information. Expert Syst. Appl. 120, 387–396 (2019)

    Article  Google Scholar 

  3. Xu, C., Zhan, T.M., Kong, L.C., Zhang, H.: Robust hierarchical fuzzy algorithm based on student t distribution and its application in image segmentation. Chin. J. Electron. 45(7), 1695–1700 (2017)

    Google Scholar 

  4. Wu, Z.Y., Ding, X.Q., Xu, X.W.: Classification of ECG signals based on deep learning and fuzzy c-means. Acta Autom. Sin. 44(10), 187–194 (2018)

    Google Scholar 

  5. Zhang, Y., Yu, Z., Li, Z.M., Lu, T.T.: Research on tournament selection mechanism and multi-objective optimization based on fuzzy c-means clustering. Chin. J. Electron. 45(11), 2677–2684 (2017)

    Google Scholar 

  6. Hu, D., Yu, X.C., Wang, J.Y.: Statistical inference in rough set theory based on kolmogorov-smirnov goodness-of-fit test. IEEE Trans. Fuzzy Syst. 25(4), 799–812 (2017)

    Article  Google Scholar 

  7. Zhang, T., Su, G., Qing, C., Xu, X.M., Cai, B., Xing, X.F.: Hierarchical lifelong learning by sharing representations and integrating hypothesis. IEEE Trans. Syst. 27, 1–11 (2019)

    Google Scholar 

  8. Chandan, S., Anu, B.: A local zernike moment-based unbiased nonlocal means fuzzy c-means algorithm for segmentation of brain magnetic resonance images. Expert Syst. Appl. 118, 625–639 (2019)

    Article  Google Scholar 

  9. Wang, J., Wang, S.T.: Double exponential fuzzy c-means algorithm based on mixed distance learning. J. Softw. 21(8), 1878–1888 (2010)

    Article  Google Scholar 

  10. Peeples, J., Cook, M., Suen, D., Zare, A., Keller, J.: Comparison of possibilistic fuzzy local information c-means and possibilistic k-nearest neighbors for synthetic aperture sonar image segmentation. In: Conference on Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XXVI, vol. 11012, pp. 110120T (2019)

  11. Agrawal, A., Tripathy, B.K.: Efficiency analysis of hybrid fuzzy c-means clustering algorithms and their application to compute the severity of disease in plant leaves. Comput. Rev. J. 17(3), 156–169 (2019)

    Google Scholar 

  12. Ahmed, M.N., Yamany, S.M., Mohamed, N., Farag, A., Moriarty, T.: A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 21(3), 193–199 (2002)

    Article  Google Scholar 

  13. Chen, S., Zhang, D.: Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure. IEEE Trans. Syst. Man Cybern. B-Cybern 34(4), 1907–1916 (2004)

    Article  Google Scholar 

  14. Szilagyi, L., Benyo, Z., Szilagyii, S., Adam, H.: MR brain image segmentation using an enhanced fuzzy C-means algorithm. In: Proceedings 25th Annual International Conference IEEE EMBS, pp. 17–21 (2003)

  15. Krinidis, S., Chatzis, V.: A robust fuzzy local information c-means clustering algorithm. IEEE Trans. Image Process. 19(5), 1328–1337 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, G.Z., Ni, M.Y., Ou, S.F., Yan, W.Q., Xu, J.D.: A preferential interval-valued fuzzy C-means algorithm for remotely sensed imagery classification. Int. J. Fuzzy Syst. 21(7), 2212–2222 (2019)

    Article  Google Scholar 

  17. Gong, M., Zhou, Z., Ma, J.: Change detection in synthetic aperture radar images based on image fusion and fuzzy clustering. IEEE Trans. Image Process. 21(4), 2141–2151 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gong, M., Liang, Y., Shi, J.: Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22(2), 573 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, N., Huo, H., Zhao, Y.M., Chen, X., Fang, T.: A spatial clustering method with edge weighting for image segmentation. IEEE Geosci. Remote Sens. Lett. 10(5), 1124–1128 (2013)

    Article  Google Scholar 

  20. Zhang, H., Wang, Q.M., Shi, W.Z., Hao, M.: A novel adaptive fuzzy local information c-means clustering algorithm for remotely sensed imagery classification. IEEE Trans. Geosci. Remote Sens. 55(9), 5057–5067 (2017)

    Article  Google Scholar 

  21. Lei, T., Jia, X.H., Zhang, Y.N.: Significantly fast and robust fuzzy C-means clustering algorithm based on morphological reconstruction and membership filtering. IEEE Trans. Fuzzy Syst. 26(5), 3027–3041 (2018)

    Article  Google Scholar 

  22. Xing, H.H., He, H., Hu, D.: An interval type-2 fuzzy sets generation method for remote sensing imagery classification. Comput. Geosci. 133, 1–9 (2019)

    Article  Google Scholar 

  23. Zhang, H., Bruzzone, L., Shi, W.Z., Hao, M., Wang, Y.J.: Enhanced spatially constrained remotely sensed imagery classification using a Fuzzy local double neighborhood information C-means clustering algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 11(8), 2896–2910 (2018)

    Article  Google Scholar 

  24. Bezdek, J.C.: Pattern recognition with fuzzy objective function algorithms. Adv. Appl. Pattern Recognit. 22(1171), 203–239 (1981)

    MATH  Google Scholar 

  25. Chen, C.L.P., Zhang, T., Chen, L., Tam, S.C.: I-Ching divination evolutionary algorithm and its convergence analysis. IEEE Trans. Cybern. 47(1), 2–13 (2017)

    Article  Google Scholar 

  26. Paul, J.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912)

    Article  Google Scholar 

  27. Zhang, T., Chen, C.L.P., Chen, L.: Design of highly nonlinear substitution boxes based on I-Ching operators. IEEE Trans. Cybern. 48(12), 3349–3358 (2018)

    Article  Google Scholar 

  28. Chen, P.F., Shi, W.Z., Kou, R.: Reference-free measurement of the classification reliability of vector-based land cover mapping. IEEE Geosci. Remote Sens. Lett. 16(7), 1090–1094 (2019)

    Article  Google Scholar 

  29. BrainWeb: Simulated brain database [DB]. https://brainweb.bic.mni.mcgill.ca/brainweb/

  30. Son, L.H., Hai, P.V.: A novel multiple fuzzy clustering method based on internal clustering validation measures with gradient descent. Int. J. Fuzzy Syst. 18(5), 894–903 (2016)

    Article  MathSciNet  Google Scholar 

  31. Geng, Y.P., Guo, X.Y., Wang, H.X., Lei, C., Xue, M.: MR brain image segmentation method based on wavelet transform image fusion algorithm and improved FCM clustering. Comput. Sci. 44, 260–265 (2017)

    Google Scholar 

  32. Zhang, X.K., Shi, W.Z., Lv, Z.Y.: Uncertainty assessment in multitemporal land use/cover mapping with classification system semantic heterogeneity. Remote Sens. 11(21), 2509 (2019)

    Article  Google Scholar 

  33. Cao, C.Y., Zheng, J.C., Huang, Y.Q., Liu, J.: Investigation of a promoted you only look once algorithm and its application in traffic flow monitoring. Appl. Sci. 9(17), 1–14 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the Natural Science Foundation of China (62072391, 62066013), the Natural Science Foundation of Shandong (ZR2019MF060, ZR2017MF008), A Project of Shandong Province Higher Educational Science and Technology Key Program (J18KZ016), and the Yantai Science and Technology Plan (2018YT06000271).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jindong Xu.

Appendices

Appendix 1

See Table 7.

Table 7 List of abbreviations

Appendix 2

The objective function of RSFCM is defined as (10), and the constraint conditions are as (18).

$$ \mathop \sum \limits_{k = 1}^{c} u_{ki} = 1,i = 1,2, \ldots ,N. $$
(18)

Using the Lagrangian multiplier method, combined with constraint condition (18), adding the coefficient \( \lambda \), and expanding all k of (10), then the objective function J is obtained, as shown in (19).

$$ J(U,V) = \mathop \sum \limits_{i = 1}^{N} \mathop \sum \limits_{k = 1}^{c} u_{ki}^{m} \times \left\{ {x_{i} - v_{k}^{2} + \frac{1}{{N_{R} }}\mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} (k)} \right]x_{j} - v_{k}^{2} } \right\} + \lambda_{1} \left( {\mathop \sum \limits_{k = 1}^{c} u_{k1} - 1} \right) + \cdots + \lambda_{i} \left( {\mathop \sum \limits_{k = 1}^{c} u_{ki} - 1} \right) \cdots + \lambda_{N} \left( {\mathop \sum \limits_{k = 1}^{c} u_{kN} - 1} \right). $$
(19)

Further simplify (20).

$$ J\left( {\varvec{U},\varvec{V}} \right) = \mathop \sum \limits_{i = 1}^{N} \mathop \sum \limits_{k = 1}^{c} u_{ki}^{m} \times \left\{ {x_{i} - v_{k}^{2} + \frac{1}{{N_{R} }}\mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} (k)} \right]x_{j} - v_{k}^{2} } \right\} + \mathop \sum \limits_{i = 1}^{N} \left( {\mathop \sum \limits_{k = 1}^{c} \lambda_{i} u_{ki} - \lambda_{i} } \right). $$
(20)

Analyze (20), finding the extreme value of the objective function. Then the derivatives \( u_{ki} \) and \( v_{k} \) are, respectively, derived, and first \( u_{ki} \) is derived. Analyze (17), unfold the summation, and derive the two-level summation \( u_{ki} \) of the two parts of the equation, respectively, to obtain (21).

$$ \frac{{\partial J\left( {U,V} \right)}}{{\partial u_{ki} }} = mu_{ki}^{m - 1} \times \left\{ {x_{i} - v_{k}^{2} + \frac{1}{{N_{R} }}\mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} (k)} \right]x_{j} - v_{k}^{2} } \right\} + \lambda_{i} . $$
(21)

Using the Euclidean norm, let (21) equal zero, and simplify the equation to (22) and (23).

$$ u_{ki}^{(m - 1)} = \frac{{( - \lambda_{i} )}}{{m\left\{ {||x_{i} - v_{k} ||^{2} + \frac{1}{{N_{R} }}\sum\nolimits_{\begin{subarray}{l} j \in N_{i} \\ j \ne i \end{subarray} } {[1 - SC_{ij} (k)]} ||x_{j} - v_{k} ||^{2} } \right\}}}, $$
(22)
$$ u_{ki} = \left[ {\frac{{( - \lambda_{i} )}}{{m\left\{ {||x_{i} - v_{k} ||^{2} + \frac{1}{{N_{R} }}\sum\nolimits_{\begin{subarray}{l} j \in N_{i} \\ j \ne i \end{subarray} } {[1 - SC_{ij} (k)]} ||x_{j} - v_{k} ||^{2} } \right\}}}} \right]^{{\frac{1}{m - 1}}} . $$
(23)

Combining formula (18) gets (24), where m > 1.

$$ \left( {\frac{{ - \lambda_{i} }}{m}} \right)^{{\frac{1}{m - 1}}} = \frac{1}{{\mathop \sum \nolimits_{s = 1}^{c} \frac{1}{{\left\{ {x_{i} - v_{s}^{2} + \frac{1}{{N_{R} }}\mathop \sum \nolimits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} (s)} \right]x_{j} - v_{s}^{2} } \right\}^{{\frac{1}{m - 1}}} }}}}. $$
(24)

Bring (24) into (23) to get the final iteration (12) of \( u_{ki} \).

It can be seen from (19) that only the first term is related to \( v_{k } \). The second-order sum is expanded, and \( v_{k } \) is derived to (25).

$$ \frac{{\partial J\left( {U,V} \right)}}{{\partial v_{k} }} = \mathop \sum \limits_{i = 1}^{N} \left( { - 2} \right)u_{ki}^{m} x_{i} - v_{k} - 2\mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} \left\{ {\frac{1}{{N_{R} }}\mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} \left( k \right)} \right]x_{j} - v_{k} } \right\}. $$
(25)

Using the Euclidean norm, let (25) be equal to 0 to get the clustering center \( v_{k } \). The detailed process is as (26), (27), and (28), the formula of \( v_{k } \) is as shown in (11).

$$ \left( { - 2} \right)\mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} x_{i} - v_{k} - \frac{2}{{N_{R} }}\mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} \left\{ {\mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} \left( k \right)} \right]x_{j} - v_{k} } \right\} = 0, $$
(26)
$$ - \mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} x_{i} + \mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} v_{k} - \frac{1}{{N_{R} }}\mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} \left\{ {\mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} \left( k \right)} \right]x_{j} - \mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} \left( k \right)} \right]v_{k} } \right\} = 0, $$
(27)
$$ \left\{ {\mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} + \frac{1}{{N_{R} }}\mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} \mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} \left( k \right)} \right]} \right\}v_{k} = \mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} x_{i} + \frac{1}{{N_{R} }}\mathop \sum \limits_{i = 1}^{N} u_{ki}^{m} \mathop \sum \limits_{{\begin{array}{*{20}c} {j \in N_{i} } \\ {j \ne i} \\ \end{array} }} \left[ {1 - SC_{ij} \left( k \right)} \right]x_{j} . $$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Zhao, T., Feng, G. et al. A Fuzzy C-Means Clustering Algorithm Based on Spatial Context Model for Image Segmentation. Int. J. Fuzzy Syst. 23, 816–832 (2021). https://doi.org/10.1007/s40815-020-01015-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-020-01015-4

Keywords

Navigation