Skip to main content

Advertisement

Log in

Psycho-neuro-endocrino-immunologic issues in multiple sclerosis: a critical review of clinical and therapeutic implications

  • Review Article
  • Published:
Hormones Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is a multifactorial, chronic, immune-mediated, and neurodegenerative disease, having a well-known hypothalamic-pituitary-adrenal (HPA) axis dysfunction. Several hormones have a great impact in the immune dysregulation, psychology, and cognitive status of patients with MS, as also in the fertility and response to treatment. In this comprehensive review, as an introduction, we mention basic data concerning MS: epidemiology, genetics, immunogenetics, epigenetics, pathophysiology, and neuroimmunology. Hormonal components of the disease cascade, mainly glucocorticoids (stress-related hormone), estrogens, prolactin and dehydroepiandrosterone (sex-related hormones), melatonin, and vitamin D, are discussed, aiming at focusing on core data regarding the impact of these hormones in MS pathophysiology, severity of the disease, correlation with comorbid mental disorders, and fertility. A great focus is given in the pre- and post-pregnancy period of MS patients, in the context of the disease-modifying treatments (DMTs) and HPA status, having in mind that there are only very limited knowledge and few papers on this specific life period of these women, having MS. All this data are presented in the main text and also in the workable tables, for the first time, suggesting targeted topics that need to be addressed in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

MS:

Multiple sclerosis

RRMS:

Relapsing remitting multiple sclerosis

PPMS:

Primary progressive multiple sclerosis

SPMS:

Secondary progressive multiple sclerosis

CNS:

Central nervous system

GWAS:

Genome-wide association studies

HLA:

Human leucocyte antigen

DMTs:

Disease-modifying treatments

HPA:

Hypothalamic-pituitary-adrenal

PSS:

Psychosocial stress

DHEA:

Dehydroepiandrosterone

TNF:

Tumor necrosis factor

SAM:

Sympathetic-adrenomedullary system

GC:

Glucocorticoid/s

CRH:

Corticotropin-releasing hormone

ACTH:

Adrenocorticotropic hormone

GRs:

Glucocorticoid receptors

MRs:

Mineralocorticoid receptors

DCs:

Dendritic cells

MHC:

Major histocompatibility complex

EAE:

Experimental autoimmune encephalomyelitis

GnRH:

Gonadotropin-releasing hormone

ER:

Estrogen receptor

PRL:

Prolactin

BD:

Bipolar disorder

SCZ:

Schizophrenia

GA:

Glatiramer acetate

NF-κΒ:

Nuclear factor kappa-light-chain-enhancer of activated B cells

STATs:

Signal transducer and activator of transcription

ICAM-1:

Intercellular adhesion molecule

References

  1. Bozikas VP, Anagnostouli MC, Petrikis P, Sitzoglou C, Phokas C, Tsakanikas C, Karavatos A (2003) Familial bipolar disorder and multiple sclerosis: a three-generation HLA family study. Prog Neuro-Psychopharmacol Biol Psychiatry 5:835–839

    Google Scholar 

  2. Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Investig 4:1180–1188

    Google Scholar 

  3. Wallin MT, Culpepper WJ, Coffman P, Pulaski S, Maloni H, Mahan CM, Haselkorn JK, Kurtzke JF (2012) The Gulf war era multiple sclerosis cohort: age and incidence rates by race, sex and service. Brain 135:1778–1785

    PubMed  Google Scholar 

  4. Baranzini SE, Khankhanian P, Patsopoulos NA (2013) Network-based multiple sclerosis pathway analysis with GWAS data from 15,000 cases and 30,000 controls. Am J Hum Genet 92(6):854–865

    Google Scholar 

  5. Stamatelos Petros, Anagnostouli Maria (2017). HLA-genotype in multiple sclerosis: the role in disease onset, clinical course, cognitive status and response to treatment: a clear step towards personalized therapeutics. Stamatelos & Anagnostouli, Immunogenet open access 2017, 2:1 https://www.researchgate.net/publication/317157101

  6. Katsavos S, Artemiadis A, Gontika M, Skarlis C, Markoglou N, Davaki P, Stamboulis E, Kilindireas K, Stefanis L, Anagnostouli M (2019) HLA-DRB1 differences in allelic distribution between familial and sporadic multiple sclerosis in a Hellenic cohort. Postgrad Med 131(7):490–495

    PubMed  Google Scholar 

  7. Gontika MP, Anagnostouli MC (2018) Anti-myelin oligodendrocyte glycoprotein and human leucocyte antigens as markers in pediatric and adolescent multiple sclerosis: on diagnosis, clinical phenotypes, and therapeutic responses. Mult Scler Int 2018. https://doi.org/10.1155/2018/8487

  8. Mellai M, Giordano M, D’Alfonso S, Marchini M, Scorza R, Danieli MG, Leone M, Ferro I, Liguori M, Trojano M, Ballerini C, Massacesi L, Cannoni S, Bomprezzi R, Momigliano-Richiardi P (2003) Prolactin and prolactin receptor gene polymorphisms in multiple sclerosis and systemic lupus erythematosus. Hum Immunol 64(2):274–284

    CAS  PubMed  Google Scholar 

  9. Kikuchi S, Fukazawa T, Niino M, Yabe I, Miyagishi R, Hamada T, Tashiro K (2002) Estrogen receptor gene polymorphisms and multiple sclerosis in Japanese patients: interaction with HLA-DRB1*1501 and disease modulation. J Neuroimmunol 128(1–2):77–81

    CAS  PubMed  Google Scholar 

  10. Johanna B, Karin L, Nadine M, Heinz W, Nicholas S (2019) Does the environment influence multiple sclerosis pathogenesis via UVB light and/or induction of vitamin D? J Neuroimmunol 329:1–8

    Google Scholar 

  11. Sachiko M, Takashi Y (2019) Gut environmental factors and multiple sclerosis. J Neuroimmunol 329:20–23

    Google Scholar 

  12. Artemiadis AK, Anagnostouli MC, Alexopoulos EC (2011) Stress as a risk factor for multiple sclerosis onset or relapse: a systematic review. Neuroepidimiology 36:109–120

    Google Scholar 

  13. Artemiadis AK, Vervanioti AA, Alexopoulos EC (2012) Stress management and multiple sclerosis: a randomized controlled trial. Arch Clin Neuropsycol 27:406–416

    Google Scholar 

  14. Cem KI, Murat K, Arzu C, Merve C, Erdem T (2015) Epigenetics of multiple sclerosis: an updated review. NeuroMolecular Med 2:83–96

    Google Scholar 

  15. Koch MW, Metz LM, Kovalchuck O (2013b) Epigenetic changes in patients with multiple sclerosis. Nat Rev Neurol 9:35–43

    CAS  PubMed  Google Scholar 

  16. George CP (2009) Stress and disorders of the stress system. Nat Rev Endocrinol 4:374–381

    Google Scholar 

  17. Simone K, Nicolas R, Graeme E (2014) Time matters-acute stress response and glucocorticoid sensitivity in early multiple sclerosis. Brain Behav Immun 41:82–89

    Google Scholar 

  18. Fassbender K, Schmidt R, Mossner R, Kischka U, Kühnen J, Schwartz A, Hennerici (1998) Mood disorders and dysfunction of the hypothalamo-pituitary-adrenal axis in multiple sclerosis: association with cerebral inflammation. Arch Neurol 55:66–72

    CAS  PubMed  Google Scholar 

  19. Anagnostouli M, Babili I, Chrousos G (2018) A novel cognitive-behavioral stress management method for multiple sclerosis. A brief report of an observational study. Neurol Res Nov 19:1–4

    Google Scholar 

  20. Acharjee S, Navani N, Tsutsui M, Hill MN, Ousman SS, Pittman QJ (2013) Altered cognitive-emotional behavior in early experimental autoimmune encephalitis--cytokine and hormonal correlates. Brain Behav Immun 33:164–172

    CAS  PubMed  Google Scholar 

  21. Gold SM, Raji A, Huitinga I (2005) Hypothalamo-pituitary-adrenal axis activity predicts disease progression in multiple sclerosis. J Neuroimmunol 165:185–191

    Google Scholar 

  22. Airas L (2015) Hormonal and gender-related immune changes in multiple sclerosis. Acta Neurol Scand 132(199):62–70

    CAS  PubMed  Google Scholar 

  23. Kantorova E, Polacek H, Bittsansky M, Baranovičová E, Hnilicová P, Čierny D, Sivák Š, Nosáľ V, Zeleňák K, Kurča E (2017) Hypothalamic damage in multiple sclerosis correlates with disease activity, disability, depression, and fatigue. Neurol Res 4:323–330

    Google Scholar 

  24. Kumpfel T, Schwann M, Weber F (2014) Hypothalamo-pituitary-adrenal axis activity evolves differentially in untreated versus treated multiple sclerosis. Psychoneuroendocrinology 45:87–95

    PubMed  Google Scholar 

  25. Bove R, Chitnis T (2014) The role of gender and sex hormones in determining the onset and outcome of multiple sclerosis. Mult Scler 5:520–526

    Google Scholar 

  26. Voskuhl RR, Gols SM (2012) Sex related factors in multiple sclerosis susceptibility and progression. Nat Rev Neurol 8:255–263

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Maninger N, Wolkowitz MO, Reus VI, Epel ES, Mellon SH (2009) Neurobiological and neuropsychiatric effects of Dehydroepiandrosterone (DHEA) and DHEA sulfate (DHEAS). Front Neuroendocrinol 30(1):65–91

    CAS  PubMed  Google Scholar 

  28. Bergamaschi R (2007) Prognostic factors in multiple sclerosis. Int Rev Neurobiol 79:423–447

    PubMed  Google Scholar 

  29. Erkut ZA, Hofman MA, Ravid R, Swaab DF (1995) Increased activity of hypothalamic CRH neurons in MS. J Neuroimmunol 1:27–33

    Google Scholar 

  30. George CP (1995) The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 332(20):1351–1362

    Google Scholar 

  31. Freeman AL, Munn HL, Lyons V, Dammermann A, Seckl JR, Chapman KE (2004) Glucocorticoid down-regulation of rat glucocorticoid receptor does not involve differential promoter regulation. J Endocrinol 183:365–374

    CAS  PubMed  Google Scholar 

  32. Bechmann L, Busse K, Stoppe M, Cotte S, Ettrich B, Then Bergh F (2014) Corticosteroid receptor expression and in vivo glucocorticoid sensitivity in multiple sclerosis. J Neuroimmunol 276:159–165

    CAS  PubMed  Google Scholar 

  33. Dickerson SS, Kemeny ME (2004) Acute stressors and cortisol responses: a theoretical integration and synthesis of a laboratory research. Psychol Bull 130:355–391

    PubMed  Google Scholar 

  34. Ilia EJ, George CP (1999) Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Elsevier Science, TEM 10(9):359–368

    Google Scholar 

  35. Whirledge S, Cidlowski J (2013) A role for glucocorticoids in stress-impaired reproduction: beyond the hypothalamus and pituitary. Endocrinology 154(12):4450–4468

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Winsen LML, Muris DFR, Polman CH, Dijkstra CD, van den Berg TK, Uitdehaag BM (2005) Sensitivity to glucocorticoids is decreased in relapsing remitting multiple sclerosis. J Clin Endocrinol Metab 90:734–740

    PubMed  Google Scholar 

  37. Eva K, Anna S, Sertedaki A, Evangelopoulos ME, Kazazoglou T, Kominakis A, Sfagos C, Charmandari E, Chrousos GP, Moutsatsou P (2016) Sequencing analysis of the human glucocorticoid receptor (NR3C1) gene in multiple sclerosis patients. J Neurol Sci 363:165–169

    Google Scholar 

  38. Berkovic E, Agius MA (2014) Mechanisms of action of ACTH n the management of relapsing forms of multiple sclerosis. Ther Adv Neurol Disord 2:83–96

    Google Scholar 

  39. Buljevac D, Hop WC, Reedeker W, Janssens AC, van der Meché FG, van Doorn PA, Hintzen RQ (2003) Self reported stressful life events and exacerbations in multiple sclerosis: prospective study. BMJ 327(7416):646

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Sloka JS, Stefaneli M (2005) The mechanism of action of methylprednisolone in the treatment of multiple sclerosis. Mult Scler 11:425–432

    CAS  PubMed  Google Scholar 

  41. Deckx N, Lee WP, Berneman ZN (2013) Neuroendocrine immunoregulation in multiple sclerosis. Clin Dev Immunol 2013:705232. https://doi.org/10.1155/2013/795232

    Article  PubMed  PubMed Central  Google Scholar 

  42. Petrovsky N, Harrison LC (1997) Diurnal rhythmicity of human cytokine production: a dynamic disequilibrium in T helper cell type 1/ T helper cell type 2 balance. J Immunol 158:5163–5168

    CAS  PubMed  Google Scholar 

  43. Lea MG, Tamar P, Yaara YB, Ariel M (2007) Chronotherapy using corticosteroids for multiple sclerosis relapses. J Neurol Neurosurg Psychiatry 78:886–888

    Google Scholar 

  44. Lea MG, Tamar P, Yanna G, Ariel M (2009) Immunomodulation by chronobiologically-based glucocorticoids treatment for multiple sclerosis. J Neuroimmunol 210:124–127

    Google Scholar 

  45. George CP, David TJ, Philip GW (1998) Interactions between the hypothalamic-pituitary-adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 129:229–240

    Google Scholar 

  46. Wisdom AJ, Cao Y, Itoh N (2013) Estrogen receptor-β ligand treatment after disease onset is neuroprotective in the multiple sclerosis model. J Neurosci Res 91:901–908

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Spence RD, Voskuhl RR (2012) Neuroprotective effects of estrogens and androgens in CNS inflammation and neurogeneration. Front Neuroendocrinol 33:105–115

    CAS  PubMed  Google Scholar 

  48. Joy D, Fred L (2014) Future treatment approaches to multiple sclerosis. Handb Clin Neurol 122:563–577

    Google Scholar 

  49. Giovanni S, Rita C, Paola V, Manna I, Andreoli V, La Russa A, La Porta G, Ruscica F, Ragonese P, Pirritano D, Bonavita S, Tedeschi G, Quattrone A (2002) Lack of association between estrogen receptor 1 gene polymorphisms and multiple sclerosis in southern Italy in humans. Neurosci Lett 327:115–118

    Google Scholar 

  50. Amato-Emilia PMP (2015) Fertility, pregnancy and childbirth in patients with multiple sclerosis: impact of disease-modifying drugs. CNS Drugs 29:207–220

    Google Scholar 

  51. Costanza M, Binart N, Steinman L, Pedotti R (2015) Prolactin: a versatile regulator of inflammation and autoimmune pathology. Autoimmun Rev 3:223–230

    Google Scholar 

  52. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 3:225–268

    Google Scholar 

  53. Confavreux C, Hutchinson M, Hours MM, Cortinovis-Tourniaire P, Moreau T (1998) Rate of pregnancy-related relapse in multiple sclerosis. Pregnancy in multiple sclerosis group. N Engl J Med 339:285–291

    CAS  PubMed  Google Scholar 

  54. Gregg C, Shikar V, Larsen P, Mak G, Chojnacki A, Yong VW, Weiss S (2007) White matter plasticity and enhanced remyelination in the maternal CNS. J Neurosci 27:1812–1823

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Masoud E, Mohammad NA, Mohammad NR, Ali A, Zahra N, Mehrdad F, Ali R (2015) Multiple sclerosis and hyperprolactinemia: a case-control study. Act Neuro Belg 115(3):253–257

    Google Scholar 

  56. Chen F, Knecht K, Birzin E, Fisher J, Wilkinson H, Mojena M, Moreno CT, Schmidt A, Harada S, Freedman LP, Reszka AA (2005) Direct agonist/antagonist functions of dehydroepiandrosterone. Endocrinology 146(11):4568–4576

    CAS  PubMed  Google Scholar 

  57. Sean PP, Michael MP (2018) DHEA modulates immune function: a review of evidence. Vitam Horm 108:125–144

    Google Scholar 

  58. Suzuki T, Suzuki N, Raymond DA, Engleman EG (1991) Dehydroepiandrosterone enhances IL2 production and cytotoxic effector function of human T cells. Clin Immunol Immunopathol 61(Issue 2, Part 1):202–211

    CAS  PubMed  Google Scholar 

  59. Solerte SB, Fioravanti M, Vignati G (1999) Dehydroepiandrosterone sulfate enhances natural killer cell cytotoxicity in humans via locally generated immunoreactive insulin-like growth factor I. J Clin Endocrinol Metabol 83:3260–3267

    Google Scholar 

  60. Straub RH, Schölmerich J, Zietz B (2000) Replacement therapy with DHEA plus corticosteroids in patients with chronic inflammatory diseases--substitutes of adrenal and sex hormones. Z Rheumatol 59(Suppl 2:II):108–118

    Google Scholar 

  61. Arendt J (1986) Role of the pineal gland and melatonin in seasonal reproductive function in mammals. Oxf Rev Reprod Biol 8:266–320

    CAS  PubMed  Google Scholar 

  62. Adamczyk-Sowa M, Pierzchala K, Sowa P, Polaniak R, Kukla M, Hartel M (2014) Influence of melatonin supplementation on serum antioxidative properties and impact of the quality of life on multiple sclerosis patients. J Physiol Pharmacol 65(4):543–550

    CAS  PubMed  Google Scholar 

  63. Esposito E, Cuzzocrea S (2010) Antiinflammatory activity of melatonin in central nervous system. Curr Neuropharmacol 8:228–242

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Adamczyk-Sowa M, Sowa P, Sebastian M, Zostawa J, Mazur B, Owczarek M, Pierzchała K (2016) Changes in serum ceruloplasmin levels based on Immunomodulatory treatments and melatonin supplementation in multiple sclerosis patients. Med Sci Monit 22:2484–2491

    PubMed  PubMed Central  Google Scholar 

  65. Skarlis C, Anagnostouli M (2019, 2019) The role of melatonin in Multiple Sclerosis. Neurol Sci. https://doi.org/10.1007/s10072-019-04137-2

  66. Trochoutsou A, Kloukina V, Samitas K, Xanthou G (2015) Vitamin-D in the immune system: genomic and non-genomic actions. Mini Rev Med Chem 15:953–963

    CAS  PubMed  Google Scholar 

  67. Koch C, Krabbe S, Hehmke B (2018) Statins, metformin, proprotein-convertase-subtilisin-kexin type-9 (PCSK9) inhibitors and sex hormones: Immunomodulatory properties? Rev Endocr Metab Disord (4):363–395

  68. Ntolkeras G, Barba C, Mavropoulos A, Vasileiadis GK, Dardiotis E, Sakkas LI, Hadjigeorgiou G, Bogdanos DP (2019) On the immunoregulatory role of statins in multiple sclerosis: the effects on Th17 cells. Immunol Res (4-5):310–324

  69. Lanzillo R, Moccia M, Russo CV, Carotenuto A, Nozzolillo A, Petruzzo M, Palladino R, Chataway J, Brescia Morra V (2019) Therapeutic lag in reducing disability progression in relapsing-remitting multiple sclerosis: 8-year follow-up of two randomized add-on trials with atorvastatin. Mult Scler Relat Disord (28):193–196

  70. Alharbi FM (2015) Update in vitamin D and multiple sclerosis. Neurosciences. 4:329–335

    Google Scholar 

  71. Etemadifar M, Janghorbani M (2015) Efficacy of high-dose vitamin D3 supplementation in vitamin D deficient pregnant women with multiple sclerosis: preliminary findings of a randomized-controlled trial. Iran J Neurol 2:67–73

    Google Scholar 

  72. Assad S, Khan HH, Ghanzafar H, Mansoor S, Rahman MA, Khan GH, Zafar B, Tariq U, Malik SA (2017) Role of sex hormone levels and psychological stress in the pathogenesis of autoimmune diseases. Cureus. 6:e1315

    Google Scholar 

  73. Gottschalk M, Kümpfel T, Flachenecker P, Uhr M, Trenkwalder C, Holsboer F, Weber F (2005) Fatigue and regulation of the hypothalamo-pituitary-adrenal axis in multiple sclerosis. Arch Neurol 62:277–280

    PubMed  Google Scholar 

  74. Andreassen OA, Harbo HF, Wang Y, Thompson WK, Schork AJ, Mattingsdal M, Zuber V, Bettella F, Ripke S, Kelsoe JR, Kendler KS, O'Donovan MC, Sklar P, McEvoy LK, Desikan RS, Lie BA, Djurovic S, Dale AM (2015) Genetic pleiotropy between multiple sclerosis and schizophrenia but not bipolar disorder: differential involvement of immune-related gene loci. Mol Psychiatry 2:207–214

    Google Scholar 

  75. Arneth BM (2017) Multiple sclerosis and schizophrenia. Int J Mol Sci 8:1760

    Google Scholar 

  76. Morgan LZ, Rollins B, Sequeira A, Byerley W, DeLisi LE, Schatzberg AF, Barchas JD, Myers RM, Watson SJ, Akil H, Bunney WE Jr, Vawter MP (2016) Quantitative trait locus and brain expression of HLA-DPA1 offers evidence of shared immune alterations in psychiatric disorders. Microarrays (Basel) 5(1):6. https://doi.org/10.3390/microarrays5010006

    Article  CAS  Google Scholar 

  77. Minagar A (2013) Current and future therapies for multiple sclerosis. Scientifica (Cairo) 2013:249101

    Google Scholar 

  78. Sandberg-Wollheim M, Grinspan A, Weinstock-Guttman B (2018) Pregnancy outcomes from the branded glatiramer acetate pregnancy database. Int J MS Care (1):9–14

  79. Gandoglia I, Ivaldi F, Laroni A, Benvenuto F, Solaro C, Mancardi G, Kerlero de Rosbo N, Uccelli A (2017) Teriflunomide treatment reduces B cells in patients with MS. Neurol Neuroimmunol Neuroinflamm 4(6):e403

    PubMed  PubMed Central  Google Scholar 

  80. Dubey D, Kieseier BC, Hartung HP, Hemmer B, Warnke C, Menge T, Miller-Little WA, Stuve O (2015) Dimethyl fumarate in relapsing-remitting multiple sclerosis: rationale, mechanisms of action, pharmacokinetics, efficacy and safety. Expert Rev Neurother (4):339–346

  81. Susan F, Sandra R, Gary B, Cristiano LM, Wenten M (2016) Evaluation of pregnancy outcomes from the Tysabri (natalizumab) pregnancy exposure registry: a global, observational, follow-up study. BMC Neurol 16:150

    Google Scholar 

  82. Thomas K, Proschmann U, Ziemssen T (2017) Fingolimod hydrochloride for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother (15):1649–1660

  83. Ruck T, Bittner S, Wiendl H, Meuth SG (2015) Alemtuzumab in multiple sclerosis: mechanism of action and beyond. Int J Mol Sci 16(7):16414–16439

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ghezzi A, Annovazzi P, Portaccio E, Cesari E, Amato MP (2013) Current recommendations for multiple sclerosis treatment in pregnancy and puerperium. Expert Rev Clin Immunol 7:683–689

    Google Scholar 

  85. Ohno Y, Fujimoto M, Nishimura A (1998) Change of peripheral levels of pituitary hormones and cytokines after injection of interferon (IFN)-β in patients with chronic hepatitis C. J Clin Endocrinol Metab 83:3681–3687

    CAS  PubMed  Google Scholar 

  86. Goebel MU, Baase J, Pithan V (2002) Acute interferon β-1b administration alters hypothalamic-pituitary-adrenal axis activity, plasma cytokines and leukocyte distribution in healthy subjects. Psychoneuroendocrinology. 27:881–892

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Anagnostouli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagnostouli, M., Markoglou, N. & Chrousos, G. Psycho-neuro-endocrino-immunologic issues in multiple sclerosis: a critical review of clinical and therapeutic implications. Hormones 19, 485–496 (2020). https://doi.org/10.1007/s42000-020-00197-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42000-020-00197-8

Keywords

Navigation