Skip to main content
Log in

Manifold Approximation by Moving Least-Squares Projection (MMLS)

  • Published:
Constructive Approximation Aims and scope

Abstract

In order to avoid the curse of dimensionality, frequently encountered in big data analysis, there has been vast development in the field of linear and nonlinear dimension reduction techniques in recent years. These techniques (sometimes referred to as manifold learning) assume that the scattered input data is lying on a lower-dimensional manifold; thus the high dimensionality problem can be overcome by learning the lower dimensionality behavior. However, in real-life applications, data is often very noisy. In this work, we propose a method to approximate \(\mathcal {M}\) a d-dimensional \(C^{m+1}\) smooth submanifold of \(\mathbb {R}^n\) (\(d \ll n\)) based upon noisy scattered data points (i.e., a data cloud). We assume that the data points are located “near” the lower-dimensional manifold and suggest a nonlinear moving least-squares projection on an approximating d-dimensional manifold. Under some mild assumptions, the resulting approximant is shown to be infinitely smooth and of high approximation order (i.e., \(\mathcal {O}(h^{m+1})\), where h is the fill distance and m is the degree of the local polynomial approximation). The method presented here assumes no analytic knowledge of the approximated manifold and the approximation algorithm is linear in the large dimension n. Furthermore, the approximating manifold can serve as a framework to perform operations directly on the high-dimensional data in a computationally efficient manner. This way, the preparatory step of dimension reduction, which induces distortions to the data, can be avoided altogether.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Aizenbud, Y., Averbuch, A.: Matrix decompositions using sub-gaussian random matrices. arXiv preprint arXiv:1602.03360 (2016)

  2. Aizenbud, Y., Sober, B.: Approximating the span of principal components via iterative least-squares. arXiv preprint arXiv:1907.12159 (2019)

  3. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering point set surfaces. IEEE Trans. Vis. Comput. Graph. 9(1), 3–15 (2003)

    Article  Google Scholar 

  4. Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)

    Article  Google Scholar 

  5. Bellman, R.: Dynamic Programming, 1st edn. Princeton University Press, Princeton, NJ (1957)

    MATH  Google Scholar 

  6. Bishop, C.M., Svensén, M., Williams, C.K.I.: Gtm: a principled alternative to the self-organizing map. In: Artificial Neural Networks ICANN, vol. 96, pp. 165–170. Springer (1996)

  7. Björck, A., Golub, G.H.: Numerical methods for computing angles between linear subspaces. Math. Comput. 27(123), 579–594 (1973)

    Article  MathSciNet  Google Scholar 

  8. Boissonnat, J.-D., Ghosh, A.: Manifold reconstruction using tangential Delaunay complexes. Discrete Comput. Geom. 51(1), 221–267 (2014)

    Article  MathSciNet  Google Scholar 

  9. Cheng, S.-W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. SODA 5, 1018–1027 (2005)

    MathSciNet  MATH  Google Scholar 

  10. Coifman, R.R., Lafon, S.: Diffusion maps. Appl. Comput. Harmon. Anal. 21(1), 5–30 (2006)

    Article  MathSciNet  Google Scholar 

  11. Demartines, P., Hérault, J.: Curvilinear component analysis: a self-organizing neural network for nonlinear mapping of data sets. IEEE Trans. Neural Netw. 8(1), 148–154 (1997)

    Article  Google Scholar 

  12. Donoho, D.L., et al.: High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality. AMS Math Challenges Lecture, pp. 1–32. Citeseer (2000)

  13. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)

    Article  MathSciNet  Google Scholar 

  14. Freedman, D.: Efficient simplicial reconstructions of manifolds from their samples. IEEE Trans. Pattern Anal. Mach. Intell. 24(10), 1349–1357 (2002)

    Article  Google Scholar 

  15. Gong, D., Sha, F., Medioni, G.: Locally linear denoising on image manifolds. J. Mach. Learn. Res. JMLR 2010, 265 (2010)

    Google Scholar 

  16. Harris, P., Brunsdon, C., Charlton, M.: Geographically weighted principal components analysis. Int. J. Geogr. Inf. Sci. 25(10), 1717–1736 (2011)

    Article  Google Scholar 

  17. Hein, M., Maier, M.: Manifold denoising. In: Advances in Neural Information Processing Systems, pp. 561–568 (2006)

  18. Hinrichsen, D., Pritchard, A.J.: Mathematical Systems Theory I: Modelling, State Space Analysis, Stability and Robustness, vol. 48. Springer, Berlin (2005)

    Book  Google Scholar 

  19. Hughes, G.: On the mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 14(1), 55–63 (1968)

    Article  Google Scholar 

  20. Jolliffe, I.: Principal Component Analysis. Wiley Online Library, Hoboken (2002)

    MATH  Google Scholar 

  21. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  Google Scholar 

  22. Kohonen, T.: Self-Organizing Maps, vol. 30. Springer Science & Business Media, Berlin (2001)

    Book  Google Scholar 

  23. Lancaster, P., Salkauskas, K.: Surfaces generated by moving least squares methods. Math. Comput. 37(155), 141–158 (1981)

    Article  MathSciNet  Google Scholar 

  24. Lang, S.: Fundamentals of Differential Geometry, vol. 191. Springer Science & Business Media, Berlin (2012)

    MATH  Google Scholar 

  25. Lax, P.D.: Linear Algebra and Its Applications. A Wiley Series of Texts, Monographs and Tracts. Wiley, Pure and Applied Mathematics. Wiley (2013)

  26. Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer Science & Business Media, Berlin (2007)

    Book  Google Scholar 

  27. Levin, D.: The approximation power of moving least-squares. Math. Comput. Am. Math. Soc. 67(224), 1517–1531 (1998)

    Article  MathSciNet  Google Scholar 

  28. Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G., Hamann, B., Müller, H., Linsen, L. (eds.) Geometric Modeling for Scientific Visualization, pp. 37–49. Springer (2004)

  29. McLain, D.H.: Drawing contours from arbitrary data points. Comput. J. 17(4), 318–324 (1974)

    Article  MathSciNet  Google Scholar 

  30. Nash, J.: C1 isometric imbeddings. Ann. Math. 60, 383–396 (1954)

    Article  MathSciNet  Google Scholar 

  31. Nealen, A.: An as-short-as-possible introduction to the least squares, weighted least squares and moving least squares methods for scattered data approximation and interpolation, vol. 130, p. 150 (2004). http://www.nealen.com/projects

  32. Rainer, A.: Perturbation theory for normal operators. Trans. Am. Math. Soc. 365(10), 5545–5577 (2013)

    Article  MathSciNet  Google Scholar 

  33. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  34. Saul, L.K., Roweis, S.T.: Think globally, fit locally: unsupervised learning of low dimensional manifolds. J. Mach. Learn. Res. 4, 119–155 (2003)

    MathSciNet  MATH  Google Scholar 

  35. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  36. Sober, B.: Structuring high dimensional data: a moving least-squares projective approach to analyze manifold data. Ph.D. thesis, School of Mathematical Sciences, Tel Aviv University, Tel Aviv (2018)

  37. Sober, B., Aizenbud, Y., Levin, D.: Approximation of functions over manifolds: a moving least-squares approach. arXiv preprint arXiv:1711.00765 (2017)

  38. Stewart, G.W., Sun, J.G.: Matrix Perturbation Theory. Computer science and scientific computing. Academic Press (1990)

  39. Stewart, G.W.: Matrix Algorithms: Volume II: Eigensystems. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  40. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  41. Torgerson, W.S.: Multidimensional scaling: I. Theory and method. Psychometrika 17(4), 401–419 (1952)

    Article  MathSciNet  Google Scholar 

  42. Von der Malsburg, C.: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14(2), 85–100 (1973)

    Article  Google Scholar 

  43. Weinberger, K.Q., Saul, L.K.: An introduction to nonlinear dimensionality reduction by maximum variance unfolding. In: AAAI, vol. 6, pp. 1683–1686 (2006)

Download references

Acknowledgements

The authors wish to thank the referees as well as the journal’s editor for their insightful remarks, which had an impact on the final version of paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barak Sober.

Additional information

Communicated by Wolfgang Dahmen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A - Geometrically Weighted PCA

Appendix A - Geometrically Weighted PCA

We wish to present here in our language the concept of geometrically weighted PCA (presented a bit differently in [16]), as this concept plays an important role in some of the lemmas proved in Sect. 4 and even in the algorithm itself.

Given a set of I vectors \(x_1 ,\ldots , x_I\) in \(\mathbb {R}^n\), we look for a Rank(d) projection \(P \in \mathbb {R}^{n \times n}\) that minimizes

$$\begin{aligned} \sum \limits _{i=1}^I || Px_i - x_i ||_2^2. \end{aligned}$$

If we denote by A the matrix whose i’th column is \(x_i\), then this is equivalent to minimizing

$$\begin{aligned} || PA - A ||_F^2 ,\end{aligned}$$

as the best possible Rank(d) approximation to the matrix A is the SVD Rank(d) truncation denoted by \(A_d\), we have:

$$\begin{aligned}&PA = P U \Sigma V^T = A_d = U \Sigma _d V^T\\&P = U \Sigma _d V^T V \Sigma ^{-1} U^T\\&P = U \Sigma _d \Sigma ^{-1} U^T\\&P = U I_d U^T\\&P = U_d U_d^T. \end{aligned}$$

And this projection yields:

$$\begin{aligned} Px = U_d U_d^T x = \sum \limits _{i=1}^d \langle x, u_i \rangle \cdot u_i , \end{aligned}$$
(25)

which is the orthogonal projection of x onto \(\mathrm{span} \lbrace u_i \rbrace _{i=1}^d\). Here \(u_i\) represents the \(\hbox {i}{th}\) column of the matrix U.

Remark 5.1

The projection P is identically the projection induced by the PCA algorithm.

1.1 The Weighted Projection

In this case, given a set of n vectors \(x_1 ,\ldots , x_I\) in \(\mathbb {R}^n\), we look for a Rank(d) projection \(P \in \mathbb {R}^{n \times n}\) that minimizes

$$\begin{aligned}&\sum \limits _{i=1}^I || Px_i - x_i ||_2^2 ~ \theta (||x_i - q||_2) = \sum \limits _{i=1}^I || Px_i - x_i ||_2^2 ~ w_i\\&\quad = \sum \limits _{i=1}^I || \sqrt{w_i} Px_i - \sqrt{w_i} x_i ||_2^2\\&\quad = \sum \limits _{i=1}^I || P \sqrt{w_i} x_i - \sqrt{w_i} x_i ||_2^2\\&\quad = \sum \limits _{i=1}^I || P y_i - y_i ||_2^2. \end{aligned}$$

So if we define the matrix \(\tilde{A}\) such that the i’th column of \(\tilde{A}\) is the vector \(y_i = \sqrt{w_i}x_i\), then we get the projection

$$\begin{aligned} P = \tilde{U}_d \tilde{U}_d^T , \end{aligned}$$
(26)

where \(\tilde{U}_d\) is the matrix containing the first d principal components of the matrix \(\tilde{A}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sober, B., Levin, D. Manifold Approximation by Moving Least-Squares Projection (MMLS). Constr Approx 52, 433–478 (2020). https://doi.org/10.1007/s00365-019-09489-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00365-019-09489-8

Keywords

Mathematics Subject Classification

Navigation