Skip to main content

Advertisement

Log in

Role of Altered Expression, Activity and Sub-cellular Distribution of Various Histone Deacetylases (HDACs) in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Histone deacetylases (HDACs) have been described to have both neurotoxic and neuroprotective roles, and partly, depend on its sub-cellular distribution. HDAC inhibitors have a long history of use in the treatment of various neurological disorders including epilepsy. Key role of HDACs in GABAergic neurotransmission, synaptogenesis, synaptic plasticity and memory formation was demonstrated whereas very less is known about their role in drug-resistant epilepsy pathologies. The present study was aimed to investigate the changes in the expression of HDACs, activity and its sub-cellular distribution in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) patients. For this study, surgically resected hippocampal tissue specimens of 28 MTLE-HS patients and 20 hippocampus from post-mortem cases were obtained. Real-time PCR was done to analyse the mRNA expression. HDAC activity and the protein levels of HDACs in cytoplasm as well as nucleus were measured spectrophotometrically. Further, sub-cellular localization of HDACs was characterized by immunofluorescence. Significant upregulation of HDAC1, HDAC2, HDAC4, HDAC5, HDAC6, HDAC10 and HDAC11 mRNA were observed in MTLE-HS. Alterations in the mRNA expression of glutamate and gamma-aminobutyric acid (GABA) receptor subunits have been also demonstrated. We observed significant increase of HDAC activity and nuclear level of HDAC1, HDAC2, HDAC5 and HDAC11 in the hippocampal samples obtained from patients with MTLE-HS. Moreover, we found altered cytoplasmic level of HDAC4, HDAC6 and HDAC10 in the hippocampal sample obtained from patients with MTLE-HS. Alterations in the level of HDACs could potentially be part of a dynamic transcription regulation associated with MTLE-HS. Changes in cytoplasmic level of HDAC4, 6 and 10 suggest that cytoplasmic substrates may play a crucial role in the pathophysiology of MTLE-HS. Knowledge regarding expression pattern and sub-cellular distribution of HDACs may help to devise specific HDACi therapy for epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed in the current study are available from the corresponding author on reasonable request.

Abbreviations

AIIMS:

All India Institute of Medical Sciences

AMPA:

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ATF4:

Activating transcription factor 4

BSA:

Bovine serum albumin

CA:

Cornu ammonis

COX-2:

Cyclooxygenase-2

DAB:

Diaminobenzidine (DAB) solution

DAPI:

4′,6-Diamidino-2-phenylindole

ELISA:

Enzyme-linked immunosorbent assay

EEG:

Electroencephalogram

FDG-PET:

Fluoro-2-deoxyglucose positron emission tomography

FITC:

Fluorescein isothiocyanate

GABA:

Gamma-aminobutyric acid

GFAP:

Glial fibrillary acidic protein

GAT:

GABA transporter

GAD65:

Glutamate decarboxylase 65

GLT-1:

Glutamate transporter 1

HDAC:

Histone deacetylase

HDACi:

Histone deacetylase inhibitor

HE:

Hematoxylin–eosin

HIF-1A:

Hypoxia-inducible factor 1 alpha

HPRT:

Hypoxanthine–guanine phosphoribosyltransferase

HS:

Hippocampal sclerosis

Hsp90:

Heat shock protein 90

IHC:

Immunohistochemistry

MEG:

Magnetoencephalography

MMP:

Matrix metalloproteinase

MRI:

Magnetic resonance imaging

MSA:

Multiple system atrophy

MTLE-HS:

Mesial temporal lobe epilepsy with hippocampal sclerosis

NAD:

Nicotinamide adenine dinucleotide

PBS:

Phosphate buffered saline

RNA:

Ribonucleic acid

SE:

Status epilepticus

STAT1:

Signal transducer and activator of transcription 1

TLE:

Temporal lobe epilepsy

References

  • Anantharaju PG, Reddy DB, Padukudru MA, Chitturi CMK, Vimalambike MG, Madhunapantula SV (2017) Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC). PLoS ONE 12(11):e0186208

    PubMed  PubMed Central  Google Scholar 

  • Arora DS, Sudarat N, Tara LT, Maureen AM, Amul JS, Chang Y, Subhash CP, Mark SB (2013) Hyposensitivity to gamma-aminobutyric acid in the ventral tegmental area during alcohol withdrawal: reversal by histone deacetylase inhibitors. Neuropsychopharmacology 38:1674–1684

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bang SR, Ambavade SD, Jagdale PG, Adkar PP, Waghmare AB, Ambavade PD (2015) Lacosamide reduces HDAC levels in the brain and improves memory: potential for treatment of Alzheimer’s disease. Pharmacol Biochem Behav 134:65–69

    CAS  PubMed  Google Scholar 

  • Bolger TA, Yao TP (2005) Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 25:9544–9553

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brusa R, Zimmermann F, Koh DS, Feldmeyer D, Gass P, Seeburg PH, Sprengel R (1995) Early-onset epilepsy and postnatal lethality associated with an editing-deficient GluR-B allele in mice. Science 270:1677–1680

    CAS  PubMed  Google Scholar 

  • Canene-Adams K (2013) Preparation of formalin fixed paraffin embedded tissue for immunohistochemistry. Method Enzymol 533:225–233

  • Chawla S, Vanhoutte P, Arnold FJ, Huang CL, Bading H (2003) Neuronal activitydependent nucleocytoplasmic shuttling of HDAC4 and HDAC5. J Neurochem 85:151–159

    CAS  PubMed  Google Scholar 

  • Çiğdem Ö, Aronica E (2012) In: H. Stefan, W. H. Theodore (eds.) Handbook of Clinical Neurology. Elsevier. pp. 621–639

  • Citraro R, Leo A, Santoro M, Dagostino G, Constanti A, Russo E (2017) Role of histone deacetylases (HDACs) in epilepsy and epileptogenesis. Curr Pharm Des 23:5546–5562

    CAS  PubMed  Google Scholar 

  • Cohen TJ, Waddell DS, Barrientos T, Lu Z, Feng G, Cox GA, Bodine SC, Yao TP (2007) The histone deacetylase HDAC4 connects neural activity to muscle transcriptional reprogramming. J Biol Chem 282:33752–33759

    CAS  PubMed  Google Scholar 

  • Corona C, Pasini S, Liu J, Amar F, Greene LA, Shelanski ML (2018) Activating transcription factor 4 (ATF4) regulates neuronal activity by controlling GABABR trafficking. J Neurosci 38:6102–6113

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cortical dysplasia type IIb and tuberous sclerosis complex. Brain Res 1453:46–55.

  • Dashwood RH, Ho E (2007) Dietary histone deacetylase inhibitors: from cells to mice to man. Semin Cancer Biol 17:363–369

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Giorgio E, Brancolini C (2016) Regulation of class IIa HDAC activities: it is not only matter of sub-cellular localization. Epigenomics 8:251–269

    PubMed  Google Scholar 

  • Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 27:3571–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Du Y, Wang F, Zou J, Le W, Dong Q, Wang Z, Shen F, Yu L, Li Y (2014) Histone deacetylase 6 regulates cytotoxic alpha-synuclein accumulation through induction of the heat shock response. Neurobiol Aging 35:2316–2328

    CAS  PubMed  Google Scholar 

  • Engel J Jr (1995) Concepts of epilepsy. Epilepsia 36:S23-29

    PubMed  Google Scholar 

  • Eyal S, Yagen B, Sobol E, Altschuler Y, Shmuel M, Bialer M (2004) The activity of antiepileptic drugs as histone deacetylase inhibitors. Epilepsia 45:737–744

    CAS  PubMed  Google Scholar 

  • Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    CAS  PubMed  Google Scholar 

  • Fan W, Huang J, Xiao H (2015) Histone deacetylase 10 suppresses proliferation and invasion by inhibiting the phosphorylation of β-catenin and serves as an independent prognostic factor for human clear cell renal cell carcinoma. Int J Clin Exp Med 8:3734–3742

    PubMed  PubMed Central  Google Scholar 

  • Geiger JR, Melcher T, Koh DS, Sakmann B, Seeburg PH, Jonas P, Monyer H (1995) Relative abundance of subunit mRNAs determines gating and Ca2+ permeability of AMPA receptors in principal neurons and interneurons in rat CNS. Neuron 15:193–204

    CAS  PubMed  Google Scholar 

  • Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C, Qian DZ (2011) HDAC4 protein regulates HIF1α protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem 286:38095–38102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gong H, Qian H, Ertl R, Astle CM, Wang GG, Harrison DE, Xu X (2015) Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget 6:15882–15890

    PubMed  PubMed Central  Google Scholar 

  • Gottlicher M, Minucci S, Zhu P, Kramer OH, Schimpf A, Giavara S, Sleeman JP, Lo CF, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, Nieland TJ, Fass DM, Kao PF, Kahn M, Su SC, Samiei A, Joseph N, Haggarty SJ, Delalle I, Tsai LH (2012) An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature 483:222–226

    PubMed  PubMed Central  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31

  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH (2009) HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henshall DC, Kobow K (2015) Epigenetics and epilepsy. Cold Spring Harb Perspect Med 5:22731

    Google Scholar 

  • Hodges SL, Lugo JN (2018) Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 146:9–16

    CAS  PubMed  Google Scholar 

  • Huang C, Fu XH, Zhou D, Li JM (2015) The Role of Wnt/β-Catenin signaling pathway in disrupted hippocampal neurogenesis of temporal lobe epilepsy: a potential therapeutic target? Neurochem Res 40:1319–1332

    CAS  PubMed  Google Scholar 

  • Huang Y, Doherty JJ, Dingledine R (2002) Altered histone acetylation at glutamate receptor 2 and brain-derived neurotrophic factor genes is an early event triggered by status epilepticus. J Neurosci 22:8422–8428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Zhao F, Wang L, Yin H, Zhou C, Wang X (2012) Increased expression of histone deacetylases 2 in temporal lobe epilepsy: a study of epileptic patients and rat models. Synapse 66:151–159

    CAS  PubMed  Google Scholar 

  • Hwang JY, Aromolaran KA, Zukin RS (2013) Epigenetic mechanisms in stroke and epilepsy. Neuropsychopharmacology 38:167–182

    CAS  PubMed  Google Scholar 

  • Immunohistochemistry. Methods in enzymology 533:225–233.

  • Isaac JT, Ashby MC, McBain CJ (2007) The role of the GluR2 subunit in AMPA receptor function and synaptic plasticity. Neuron 54(6):859–871

    CAS  PubMed  Google Scholar 

  • Jagirdar R, Drexel M, Bukovac A, Tasan RO, Sperk G (2016) Expression of class II histone deacetylases in two mouse models of temporal lobe epilepsy. J Neurochem 136:717–730

    CAS  PubMed  Google Scholar 

  • Jagirdar R, Drexel M, Kirchmair E, Tasan RO, Sperk G (2015) Rapid changes in expression of class I and IV histone deacetylases during epileptogenesis in mouse models of temporal lobe epilepsy. Exp Neurol. 273:92–104

    CAS  PubMed  Google Scholar 

  • Jawerka M, Colak D, Dimou L, Spiller C, Lagger S, Montgomery RL, Olson EN, Wurst W, Göttlicher M, Götz M (2010) The specific role of histone deacetylase 2 in adult neurogenesis. Neuron Glia Biol 6:93–107

    PubMed  Google Scholar 

  • Kaidi A, Qualtrough D, Williams AC, Paraskeva C (2006) Direct transcriptional up-regulation of cyclooxygenase-2 by hypoxia-inducible factor (HIF)-1 promotes colorectal tumor cell survival and enhances HIF-1 transcriptional activity during hypoxia. Cancer Res 66:6683–6691

    CAS  PubMed  Google Scholar 

  • Kassis H, Shehadah A, Chopp M, Roberts C, Zhang ZG (2015) Stroke induces nuclear shuttling of Histone Deacetylase 4. Stroke 46:1909–1915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klampfer L, Huang J, Swaby LA, Augenlicht L (2004) Requirement of histone deacetylase activity for signaling by STAT1. J Biol Chem 279(29):30358–30368

    CAS  PubMed  Google Scholar 

  • Koh DS, Burnashev N, Jonas P (1995) Block of native Ca(2+)-permeable AMPA receptors in rat brain by intracellular polyamines generates double rectification. J Physiol 486:305–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HA, Song MJ, Seok YM, Kang SH, Kim SY, Kim I (2015) Histone deacetylase 3 and 4 complex stimulates the transcriptional activity of the mineralocorticoid receptor. PLoS ONE 10:e0136801. https://doi.org/10.1371/journal.pone.0136801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Chen J, Ricupero CL, Hart RP, Schwartz MS, Kusnecov A, Herrup K (2012a) Nuclear accumulation of HDAC4 in ATM deficiency promotes neurodegeneration in ataxia telangiectasia. Nat Med 18:783–790

    PubMed  PubMed Central  Google Scholar 

  • Li S, Yu S, Zhang C, Shu H, Liu S, An N, Yang M, Yin Q, Yang H (2012b) Increased expression of matrix metalloproteinase 9 in cortical lesions from patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. Brain Res 1453:46–55

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  • Long Q, Fan C, Kai W, Luo Q, Xin W, Wang P, Wang A, Wang Z, Han R, Fei Z, Qiu B, Liu W (2014) Hypoxia inducible factor-1α expression is associated with hippocampal apoptosis during epileptogenesis. Brain Res 1590:20–30

    CAS  PubMed  Google Scholar 

  • Mak AB, Nixon AM, Kittanakom S, Stewart JM, Chen GI, Curak J, Gingras AC, Mazitschek R, Neel BG, Stagljar I, Moffat J (2012) Regulation of CD133 by HDAC6 promotes β-Catenin signaling to suppress cancer cell differentiation. Cell Rep 2:951–963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mielcarek M, Landles C, Weiss A, Bradaia A, Seredenina T, Inuabasi L, Osborne GF, Wadel K, Touller C, Butler R, Robertson J, Franklin SA, Smith DL, Park L, Marks PA, Wanker EE, Olson EN, Luthi-Carter R, van der Putten H, Beaumont V, Bates GP (2013) HDAC4 reduction: a novel therapeutic strategy to target cytoplasmic huntingtin and ameliorate neurodegeneration. PLoS Biol 11:e1001717

    PubMed  PubMed Central  Google Scholar 

  • Mielcarek M, Seredenina T, Stokes MP, Osborne GF, Landles C, Inuabasi L, Franklin SA, Silva JC, Luthi-Carter R, Beaumont V, Bates GP (2013) HDAC4 does not act as a protein deacetylase in the postnatal murine brain in vivo. PLoS ONE 8:e80849

    PubMed  PubMed Central  Google Scholar 

  • Müller MC, Osswald M, Tinnes S, Häussler U, Jacobi A, Förster E, Frotscher M, Haas CA (2009) Exogenous reelin prevents granule cell dispersion in experimental epilepsy. Exp Neurol 216:390–397

    PubMed  Google Scholar 

  • Odagiri S, Tanji K, Mori F, Miki Y, Kakita A, Takahashi H, Wakabayashi K (2013) Brain expression level and activity of HDAC6 protein in neurodegenerative dementia. Biochem Biophys Res Commun 430:394–399

    CAS  PubMed  Google Scholar 

  • Park HG, Yu HS, Park S, Ahn YM, Kim YS, Kim SH (2014) Repeated treatment with electroconvulsive seizures induces HDAC2 expression and down-regulation of NMDA receptor-related genes through histone deacetylation in the rat frontal cortex. Int J Neuropsychopharmacol 17:1487–1500

    CAS  PubMed  Google Scholar 

  • Penney J, Tsai LH (2014) Histone deacetylases in memory and cognition. Sci Signal 7(355):12

    Google Scholar 

  • Reddy SD, Clossen BL, Reddy DS (2018) Epigenetic histone deacetylation inhibition prevents the development and persistence of temporal lobe epilepsy. J Pharmacol Exp Ther 364:97–109

    CAS  PubMed  Google Scholar 

  • Rempe RG, Hartz AMS, Soldner ELB, Sokola BS, Alluri SR, Abner EL, Krycsio RJ, Pekcec A, Schlichtiger J, Bauer B (2018) Matrix Metalloproteinase-mediated blood-brain barrier dysfunction in epilepsy. J Neurosci 38:4301–4315

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prayson RA (2018) In practical surgical neuropathology: a diagnostic approach. In: Perry A, Bra DJ (eds), 2nd edn. Elsevier, pp 515–526

  • Rivieccio MA, Brochier C, Willis DE, Walker BA, D’Annibale MA, McLaughlin K, Siddiq A, Kozikowski AP, Jaffrey SR, Twiss JL, Ratan RR, Langley B (2009) HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A 106:19599–19604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sando R, Gounko N, Pieraut S, Liao L, Yates J, Maximov A (2012) HDAC4 governs a transcriptional program essential for synaptic plasticity and memory. Cell 151:821–834

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schlumm F, Mauceri D, Freitag HE, Bading H (2013) Nuclear calcium signaling regulates nuclear export of a subset of class IIa histone deacetylases following synaptic activity. J Biol Chem 288:8074–8084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz S, Truglio M, Scott MJ, Fitzsimons HL (2016) Long-term memory in Drosophila is influenced by the histone deacetylase HDAC4 interacting with the SUMO-conjugating enzyme Ubc9. Genetics 203:1249–1264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L, Rosen N, Neckers L (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sha L, Wang X, Li J, Shi X, Wu L, Shen Y, Xu Q (2017) Pharmacologic inhibition of Hsp90 to prevent GLT-1 degradation as an effective therapy for epilepsy. J Exp Med 214:547–563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen X, Chen J, Li J, Kofler J, Herrup K (2016) Neurons in vulnerable regions of the Alzheimer’s disease brain display reduced ATM signaling. eNeuro 3:1–18

    Google Scholar 

  • Song C, Zhu S, Wu C, Kang J (2013) Histone deacetylase (HDAC) 10 suppresses cervical cancer metastasis through inhibition of matrix metalloproteinase (MMP) 2 and 9 expression. J Biol Chem 288:28021–28033

    CAS  PubMed  PubMed Central  Google Scholar 

  • Srivastava A, Dixit AB, Paul D, Tripathi M, Sarkar C, Chandra PS, Banerjee J (2017) Comparative analysis of cytokine/chemokine regulatory networks in patients with hippocampal sclerosis (MTLE-HS) and focal cortical dysplasia (FCD). Sci Rep 7(1):15904

    PubMed  PubMed Central  Google Scholar 

  • Thomas EA, D’Mello SR (2018) Complex neuroprotective and neurotoxic effects of histone deacetylases. J Neurochem 145:96–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Villagra A, Cheng F, Wang HW, Suarez I, Glozak M, Maurin M, Nguyen D, Wright KL, Atadja PW, Bhalla K, Pinilla-Ibarz J, Seto E, Sotomayor EM (2009) The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat Immunol 10:92–100

    CAS  PubMed  Google Scholar 

  • Volmar CH, Wahlestedt C (2015) Histone deacetylases (HDACs) and brain function. Neuroepigenetics 1:20–27

    Google Scholar 

  • Wei Q, Dong Z (2014) HDAC4 blocks autophagy to trigger podocyte injury: Non-epigenetic action in diabetic nephropathy. Kidney Int 86:666–668

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang XJ, Seto E (2008) The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat Rev Mol 9:206–218

    CAS  Google Scholar 

  • Zhang S, Huang W, Li X, Yang Z, Feng B (2015) Synthesis, biological evaluation, and computer-aided drug designing of new derivatives of hyperactive suberoylanilide hydroxamic acid histone deacetylase inhibitors. Chem Biol Drug Des 86(4):795–804

    CAS  PubMed  Google Scholar 

  • Zhang Y, Dong HT, Duan L, Niu L, Yuan GQ, Dai JQ, Hou BR, Pan YW (2019) HDAC4 gene silencing alleviates epilepsy by inhibition of GABA in a rat model. Neuropsychiatr Dis Treat 15:405–416

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are indebted to all the patients and their family for participating in this study. This work is funded by the Intramural Grant of AIIMS (A449), MEG resource facility, funded by Department of Biotechnology, Ministry of Science & Technology, Govt. of India [BT/MED/122/SP24580/2018] and MG grant from ACBR.

Author information

Authors and Affiliations

Authors

Contributions

A.S. designed the research, performed research, analysed the data and wrote the paper A.B.D. designed the research, and wrote the paper. V.D. performed research. M.T. designed the research. S.L. provided the autopsy samples for research. M.C.S. and F.S analysed the histopathological features and IHC. P.S.C. and R.D. provided clinical samples, designed the research. J.B. designed the research and wrote the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Ramesh Doddamani or Aparna Banerjee Dixit.

Ethics declarations

Conflict of interest

The authors declare no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Ethical Approval

The present study was conducted in accordance with the Declaration of Helsinki and was approved by the Institute Ethics Committee, AIIMS, New Delhi (Ref. No. IEC-198/01.04.2016). Informed and written consent was obtained from all the patients, their parents, or legal guardians if patients were underage.

Informed Consent

All donors gave informed consent for the use of their tissue and medical files for research purposes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A., Banerjee, J., Dubey, V. et al. Role of Altered Expression, Activity and Sub-cellular Distribution of Various Histone Deacetylases (HDACs) in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis. Cell Mol Neurobiol 42, 1049–1064 (2022). https://doi.org/10.1007/s10571-020-00994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-00994-0

Keywords

Navigation