Skip to main content

Advertisement

Log in

Dihydrophthalazinediones accelerate amyloid β peptide aggregation to nontoxic species

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The production and accumulation of toxic amyloid plaques is one of the hallmarks of Alzheimer’s disease (AD). Amyloid beta (Aβ) peptides undergo self-aggregation to form soluble oligomers, protofibrils and insoluble fibrils. This process is termed as amyloidogenesis and is a major contributor to the observed neuronal damage and memory impairment in the AD brain. Therefore, modulation of Aβ aggregation process is considered to be an effective target to prevent neuronal damage under AD conditions. Modulation of amyloidogenesis involves inhibition of aggregation to form a toxic species or acceleration to drive the aggregation process to form species that are nontoxic by employing well-designed external ligands. In this context, we report a set of 2,3-dihydrophthalazine-1,4-dione (dihydrophthalazinedione, Phz) based small molecules (Phz 1–4) to modulate the Aβ42 aggregation and in cellular toxicity. Our detailed study (thioflavin T fluorescence assay, dot blot and transmission electron microscopy analysis) revealed fluorine containing Phz 4 as the potent modulator of Aβ42 aggregation by accelerating the process to form nontoxic aggregated species through hydrophobic and halogen interactions. Aβ42 aggregates formed in the presence of Phz 4 are mostly nontoxic when compared to the normal amyloid aggregates in the cellular milieu (PC12 cells). This study established that the hydrophobic and halogen interactions can be employed to develop anti-AD drug candidates. The excellent cell viability, effective modulation of Aβ42 aggregation to form nontoxic species and cellular (neuronal) rescue by Phz 4 offer a novel platform to develop therapeutic strategies for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Rajasekhar K, Chakrabarti M and Govindaraju T 2015 Chem. Commun. 51 13434

    CAS  Google Scholar 

  2. Alzheimer A 2015 Alzheimer’s Dementia 11 332

    Google Scholar 

  3. Selkoe D J and Hardy J 2016 EMBO Mol. Med. 8 595

    CAS  Google Scholar 

  4. Knowles T P, Vendruscolo M and Dobson C M 2014 Nat. Rev. Mol. Cell Biol. 15 384

    CAS  Google Scholar 

  5. De Strooper B and Karran E 2016 Cell 164 603

    Google Scholar 

  6. Chiti F and Dobson C M 2017 Annu. Rev. Biochem. 86 27

    CAS  Google Scholar 

  7. Rajasekhar K, Suresh S, Manjithaya R and Govindaraju T 2015 Sci. Rep. 5 8139

    CAS  Google Scholar 

  8. Rajasekhar K and Govindaraju T 2018 RSC Adv. 8 23780

    CAS  Google Scholar 

  9. Soto C, Sigurdsson E M, Morelli L, Kumar R A, Castaño E M and Frangione B 1998 Nat. Med. 4 822

    CAS  Google Scholar 

  10. Walsh D M and Selkoe D J 2007 J. Neurochem. 101 1172

    CAS  Google Scholar 

  11. Stefani M and Dobson C M 2003 J. Mol. Med. 81 678

    CAS  Google Scholar 

  12. Chimon S, Shaibat M A, Jones C R, Calero D C, Aizezi B and Ishii Y 2007 Nat. Struct. Mol. 14 1157

    CAS  Google Scholar 

  13. Mastrangelo I A, Ahmed M, Sato T, Liu W, Wang C, Hough P et al 2006 J. Mol. Biol. 358 106

    CAS  Google Scholar 

  14. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S et al 2010 Nat. Struct. Mol. 17 561

    CAS  Google Scholar 

  15. Bieschke J, Herbst M, Wiglenda T, Friedrich R P, Boeddrich A, Schiele F et al 2012 Nat. Chem. Biol. 8 93

    CAS  Google Scholar 

  16. Rajasekhar K, Madhu C and Govindaraju T 2016 ACS Chem. Neurosci. 7 1300

    CAS  Google Scholar 

  17. Ramesh M, Makam P, Voshavar C, Khare H, Rajasekhar K, Ramakumar S et al 2018 Org. Biomol. Chem. 16 7682

    CAS  Google Scholar 

  18. Samanta S, Rajasekhar K, Babagond V and Govindaraju T 2019 ACS Chem. Neurosci. 10 3611

    CAS  Google Scholar 

  19. Rajasekhar K, Mehta K and Govindaraju T 2018 ACS Chem. Neurosci. 9 1432

    CAS  Google Scholar 

  20. Herbst M and Wanker E E 2006 Curr. Pharm. 12 2543

    CAS  Google Scholar 

  21. Habchi J, Arosio P, Perni M, Costa A R, Yagi-Utsumi M, Joshi P et al 2016 Sci. Adv. 2 e1501244

    Google Scholar 

  22. Habchi J, Chia S, Limbocker R, Mannini B, Ahn M, Perni M et al 2017 Proc. Natl. Acad. Sci. 114 E200

    CAS  Google Scholar 

  23. Bieschke J, Russ J, Friedrich R P, Ehrnhoefer D E, Wobst H, Neugebauer K et al 2010 Proc. Natl. Acad. Sci. 107 7710

    CAS  Google Scholar 

  24. Ladiwala A R A, Dordick J S and Tessier P M 2011 J. Biol. Chem. 286 3209

    CAS  Google Scholar 

  25. Ehrnhoefer D E, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R et al 2008 Nat. Struct. Mol. Biol. 15 558

    CAS  Google Scholar 

  26. Cummings J L, Morstorf T and Zhong K 2014 Alzheimer’s Res. Ther. 6 37

    Google Scholar 

  27. Yang D S, Yip C M, Huang T J, Chakrabartty A and Fraser P E 1999 J. Biol. Chem. 274 32970

    CAS  Google Scholar 

  28. Limbocker R, Chia S, Ruggeri F S, Perni M, Cascella R, Heller G T et al 2019 Nat. Commun. 10 225

    CAS  Google Scholar 

  29. Shoup T, Normandin M, Takahashi K, Griciuc A, Dhaynaut M, Quinti L et al 2019 J. Nucl. Med. 60 114

    Google Scholar 

  30. Cheng Y, Ono M, Kimura H, Kagawa S, Nishii R, Kawashima H et al 2010 ACS Med. Chem. Lett. 1 321

    CAS  Google Scholar 

  31. Ono M, Kawashima H, Nonaka A, Kawai T, Haratake M, Mori H et al 2006 J. Med. Chem. 49 2725

    CAS  Google Scholar 

  32. Ono M, Cheng Y, Kimura H, Cui M, Kagawa S, Nishii R et al 2011 J. Med. Chem. 54 2971

    CAS  Google Scholar 

  33. Loureiro J A, Crespo R, Börner H, Martins P M, Rocha F A, Coelho M et al 2014 J. Mater. Chem. B 2 2259

    CAS  Google Scholar 

  34. Rajasekhar K, Narayanaswamy N, Murugan N A, Viccaro K, Lee H G, Shah K et al 2017 Biosens. Bioelectron. 98 54

    CAS  Google Scholar 

  35. Rajasekhar K, Narayanaswamy N, Murugan N A, Kuang G, Ågren H and Govindaraju T 2016 Sci. Rep. 6 23668

    CAS  Google Scholar 

  36. Giacomelli C E and Norde W 2005 Macromol. Biosci. 5 401

    CAS  Google Scholar 

  37. Rocha S, Thünemann A F, do Carmo Pereira M, Coelho M, Möhwald H and Brezesinski G 2008 Biophys. Chem. 137 35

    CAS  Google Scholar 

  38. Kim W and Hecht M H 2006 Proc. Natl. Acad. Sci. 103 15824

    CAS  Google Scholar 

  39. Jalili-Baleh L, Nadri H, Moradi A, Bukhari S N A, Shakibaie M, Jafari M et al 2017 Eur. J. Med. Chem. 139 280

    CAS  Google Scholar 

  40. Levine I I I H 1993 Protein Sci. 2 404

    CAS  Google Scholar 

  41. Hellstrand E, Boland B, Walsh D M and Linse S 2009 ACS Chem. Neurosci. 1 13

    Google Scholar 

  42. Petkova A T, Ishii Y, Balbach J J, Antzutkin O N, Leapman R D, Delaglio F et al 2002 Proc. Natl. Acad. Sci. 99 16742

    CAS  Google Scholar 

  43. Pike C J, Walencewicz-Wasserman A J, Kosmoski J, Cribbs D H, Glabe C G and Cotman C W 1995 J. Neurochem. 64 253

    CAS  Google Scholar 

  44. Shughrue P, Acton P, Breese R, Zhao W Q, Chen-Dodson E, Hepler R et al 2010 Neurobiol. Aging 31 189

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof C N R Rao, FRS, for constant support and encouragement, JNCASR, SwarnaJayanti Fellowship, the Department of Science and Technology (DST), Government of India (Grant DST/SJF/CSA-02/2015–2016), Sheikh Saqr Laboratory (SSL), ICMS-JNCASR. DG thank the JNCASR and SS thank CSIR, New Delhi for the research fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to THIMMAIAH GOVINDARAJU.

Additional information

This article is part of the Topical Collection: SAMat Focus Issue.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1211 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GHOSH, D., SAMANTA, S. & GOVINDARAJU, T. Dihydrophthalazinediones accelerate amyloid β peptide aggregation to nontoxic species. Bull Mater Sci 43, 309 (2020). https://doi.org/10.1007/s12034-020-02223-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02223-2

Keywords

Navigation