Skip to main content
Log in

Calorific Value of Coke 6. Increasing the Calorific Value

  • COKE
  • Published:
Coke and Chemistry Aims and scope Submit manuscript

Abstract

The gross calorific value of coke is largely controllable. It may be increased by optimizing the following factors: the volatile matter from the batch, the ultimate composition of the batch (taking account of oxidation), its granulometric composition, the packing density of the charge in the coking chamber, the temperature in the heating system, the coking rate, the coking period, the final coking temperature, the quenching method, and the size of the coke pieces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. Miroshnichenko, I.V., Miroshnichenko, D.V., Shulga, I.V., et al., Calorific value of coke. 1. Prediction, Coke Chem., 2019, vol. 62, no. 4, pp. 143–149.

    Article  Google Scholar 

  2. Miroshnichenko, I.V., Miroshnichenko, D.V., Shulga, I.V., and Balaeva, Y.S., Calorific value of coke. 2. Influence of the packing density of the coal batch, Coke Chem., 2019, vol. 62, no. 6, pp. 234–239.

    Article  Google Scholar 

  3. Miroshnichenko, I.V., Miroshnichenko, D.V., Shulga, I.V., and Balaeva, Y.S., Calorific value of coke. 3. Influence of coal storage, Coke Chem., 2019, vol. 62, no. 12, pp. 556–564.

    Article  Google Scholar 

  4. Miroshnichenko, I.V., Miroshnichenko, D.V., Shulga, I.V., Balaeva, Y.S., and Tsigankov, A.V., Calorific value of coke. 4. Size distribution, Coke Chem., 2020, vol. 63, no. 3, pp. 120–125.

    Article  Google Scholar 

  5. Miroshnichenko, I.V., Miroshnichenko, D.V., Shulga, I.V., and Balaeva, Y.S., Calorific value of coke 5. Quenching method, Coke Chem., 2020, vol. 63, no. 4, pp. 177–182.

    Article  Google Scholar 

  6. Miroshnichenko, D.V., Desna, N.A., and Ulanovskiy, M.L., Oxidation of coal in industrial conditions. 1. Kinetics of natural oxidation, Coke Chem., 2014, vol. 57, no. 7, pp. 276–283.

    Article  Google Scholar 

  7. Miroshnichenko, D.V., Drozdnik, I.D., Kaftan, Yu.S., et al., Kinetic characteristics of coal oxidation, Coke Chem., 2012, vol. 55, no. 3, pp. 87–96.

    Article  Google Scholar 

  8. Miroshnichenko, D.V., Kaftan, Yu.S., Desna, N.A., and Sytnik, A.V., Oxidation of bituminous coal. 1. Expansion pressure, Coke Chem., 2015, vol. 58, no. 10, pp. 376–381.

    Article  Google Scholar 

  9. Miroshnichenko, D.V., Desna, N.A., and Kaftan, Yu.S., Oxidation of coal in industrial conditions. 2. Modification of the plastic and viscous properties on oxidation, Coke Chem., 2014, vol. 57, no. 10, pp. 375–380.

    Article  Google Scholar 

  10. Miroshnichenko, D.V., Desna, N.A., and Kaftan, Yu.S., Oxidation of coal in industrial conditions. 4. Coal temperature in heap storage, Coke Chem., 2015, vol. 58, no. 2, pp. 43–48.

    Article  Google Scholar 

  11. Sklyar, M.G., Fiziko-khimicheskie osnovy spekaniya uglei (Physical-Chemical Basis of Coal Sintering), Moscow: Metallurgiya, 1984.

  12. Sklyar, M.G., Soldatenko, E.M., and Valters, N.A., Influence of pressure on the structure and properties of various cokes, Koks Khim., 1981, no. 11, pp. 11–15.

  13. Sklyar, M.G., Soldatenko, E.M., and Valters, N.A., The phenomenon of intrastructural plasticization in coal, Koks Khim., 1984, no. 2, pp. 2–6.

  14. Valters, N.A., Formation of the fine structure of coke depending on the properties of coal in the plastic state, Extended Abstract of Cand. Sci. (Eng.) Dissertation, Kharkov, 1980.

  15. Shulga, I.V., Miroshnichenko, D.V., and Balaeva, Ya.S., Metodika rozrakhunkovogo viznachennya seredn’ozvazhenikh pokaznikiv teplotvornoi zdatnosti koksokhimichnoi produktsii (Calculation Method of the Average Indices of the Net Calorific Value of Coke Products), Kharkov: Uglekhim. Inst., 2017.

  16. Drozdnik, I.D., Shulga, I.V., Miroshnichenko, D.V., et al., Evaluation of calorific value of commercial classes of coke, Uglekhim. Zh., 2010, nos. 5–6, pp. 22–26.

  17. PTE-2017. Pravila tekhnicheskoi ekspluatatsii koksokhimicheskikh predpriyatii. Utverzhdennyi prikazom UNPA “Ukrkoks no. 20 ot 29.12.2017” (PTE-2017. Rules of Technical Operation of Coke Chemical Enterprises: Approved by the Order of UNPA Ukrkoks No. 20 of December 29, 2017), Kharkov: Giprokoks, 2018.

  18. Spravochnik koksokhimika. Tom 2. Proizvodstvo koksa (Handbook of Coke Chemist, Vol. 2: Coke Production), 3rd ed., Kharkov: Inzhek, 2014, pp. 13–42.

  19. Filatov, Yu.V., Kovlaev, E.T., Shulga, I.V., et al., Teoriya i praktika proizvodstva i primeneniya domennogo koksa uluchshennogo kachestva (Theory and Practice of Production and Use of Blast Furnace Coke of the Best Quality), Kyiv: Naukova Dumka, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Miroshnichenko, D. V. Miroshnichenko or I. V. Shulga.

Additional information

Translated by B. Gilbert

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miroshnichenko, I.V., Miroshnichenko, D.V. & Shulga, I.V. Calorific Value of Coke 6. Increasing the Calorific Value. Coke Chem. 63, 378–388 (2020). https://doi.org/10.3103/S1068364X20080062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068364X20080062

Keywords:

Navigation