Skip to main content
Log in

Methanol Steam Reforming in a Reactor with a Palladium–Copper Membrane in the Presence of a Nickel–Copper Catalyst

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A study of methanol steam reforming (MSR) in the presence of a Ni0.2–Cu0.8/Ce0.3Zr0.7O2-δ catalyst in conventional and membrane reactors has revealed that the hydrogen yield in a reactor with a Pd–Cu membrane is higher than that in a conventional flow reactor. It has been shown that the Pd–Cu alloy membrane exhibits high hydrogen permeability. Methanol steam reforming in the membrane reactor provides the production of high-purity hydrogen, because a stream of pure hydrogen free from any impurities is effluent from the permeate zone. Measurements of the hydrogen permeability of the Pd–Cu alloy foil membrane in the membrane reactor before and after catalysis have been conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. F. Dawood, M. Anda, and G. M. Shafiullah, Int. J. Hydrogen Energy 45, 3847 (2020).

    Article  CAS  Google Scholar 

  2. N. L. Garland, D. C. Papageorgopoulos, and J. M. Stanford, Energy Procedia 28, 2 (2012).

    Article  CAS  Google Scholar 

  3. A. B. Yaroslavtsev, I. A. Stenina, and D. V. Golubenko, Pure Appl. Chem. 92, 1147 (2020).

    Article  CAS  Google Scholar 

  4. M. V. Tsodikov, A. V. Chistyakov, F. A. Yandieva, et al., Catal. Ind. 3, 4 (2011).

    Article  Google Scholar 

  5. F. Hasegawa, S. Yokoyama, and K. Imou, Bioresour. Technol. 101, 109 (2010).

    Article  Google Scholar 

  6. R. S. Kempegowda, P. V. Pannir Selvam, Ø. Skreiberg, and K.-Q. Trana, J. Chem. Technol. Biotechnol. 87, 897 (2012).

    Article  CAS  Google Scholar 

  7. E. Yu. Mironova, A. A. Lytkina, M. M. Ermilova, et al., Int. J. Hydrogen Energy 40, 3557 (2015).

    Article  CAS  Google Scholar 

  8. H. Jeong, K. I. Kimb, T. H. Kimb, et al., J. Power Sources 159, 1296 (2006).

    Article  CAS  Google Scholar 

  9. G.-S. Wu, D.-S. Mao, G.-Z. Lu, et al., Catal. Lett. 130, 177 (2009).

    Article  CAS  Google Scholar 

  10. L. Yong-Feng, D. Xin-Fa, and L. Wei-Ming, Int. J. Hydrogen Energy 29, 1617 (2004).

    Article  Google Scholar 

  11. L. Ma, B. Gong, T. Tran, and M. S. Wainwright, Catal. Today 63, 499 (2000).

    Article  CAS  Google Scholar 

  12. A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Int. J. Hydrogen Energy 44 (26), 13 310 (2019).

    Article  Google Scholar 

  13. C.-Z. Yao, L.-C. Wang, Y.-M. Liu, et al., Appl. Catal., A 297, 151 (2006).

  14. J.-P. Shen and C. Song, Catal. Today 77, 89 (2002).

    Article  CAS  Google Scholar 

  15. T. Shishido, Y. Yamamoto, H. Morioka, et al., . Appl. Catal., A 263, 249 (2004).

  16. O. Jakdetchai, N. Takayama, and T. Nakajima, Kinet. Catal. 46, 56 (2005).

    CAS  Google Scholar 

  17. G. Águila, J. Jiménez, S. Guerrero, et al., Appl. Catal., A 360, 98 (2009).

  18. J. Agrell, H. Birgersson, M. Boutonnet, et al., J. Catal. 219, 389 (2003).

    Article  CAS  Google Scholar 

  19. A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, et al., Pet. Chem. 57, 1219 (2017).

    Article  CAS  Google Scholar 

  20. S. Yang, F. Zhou, Y. Liu, et al., Int. J. Hydrogen Energy 44, 7252 (2019).

    Article  CAS  Google Scholar 

  21. T. Valdés-Solís, G. Marbán, and A. B. Fuertes, Catal. Today 116, 354 (2006).

    Article  Google Scholar 

  22. J. Papavasiliou, G. Avgouropoulos, and T. Ioannides, Appl. Catal., B 69, 226 (2007).

    Article  CAS  Google Scholar 

  23. X. Zhang and P. Shi, J. Mol. Catal., A 194, 99 (2003).

  24. Y. Liu, T. Hayakawa, T. Tsunoda, et al. Top. Catal. 22, 205 (2003).

    Article  CAS  Google Scholar 

  25. A. A. Lytkina, N. V. Orekhova, M. M. Ermilova, and A. B. Yaroslavtsev, Int. J. Hydrogen Energy 43, 198 (2018).

    Article  CAS  Google Scholar 

  26. M. R. Rahimpour, F. Samimi, A. Babapoor, et al., Chem. Eng. Process. 121, 24 (2017).

    Article  CAS  Google Scholar 

  27. N. A. Al-Mufachi, N. V. Rees, and R. Steinberger-Wilkens, Renew. Sust. Energy Rev. 47, 540 (2015).

    Article  CAS  Google Scholar 

  28. A. A. Lytkina, N. V. Orekhova, and A. B. Yaroslavtsev, Pet. Chem. 58, 911 (2018).

    Article  CAS  Google Scholar 

  29. S. Kim, S.-W. Yun, B. Lee, et al., Int. J. Hydrogen Energy 44, 2330 (2019).

    Article  CAS  Google Scholar 

  30. E. Yu. Mironova, M. M. Ermilova, N. V. Orekhova, et al., Catal. Today 236, 64 (2014).

    Article  CAS  Google Scholar 

  31. A. Iulianelli, P. Ribeirinha, A. Mendes, and A. Basile, Renew. Sust. Energy Rev. 29, 355 (2014).

    Article  CAS  Google Scholar 

  32. A. Iulianelli, T. Longo, and A. Basile, J. Membr. Sci. 323, 235 (2008).

    Article  CAS  Google Scholar 

  33. K. Zhang and J. D. Way, Sep. Purif. Technol. 186, 39 (2017).

    Article  CAS  Google Scholar 

  34. V. M. Ievlev, K. A. Solntsev, A. I. Sitnikov, et al., Inorg. Mater.: Appl. Res. 7, 586 (2016).

    Article  Google Scholar 

  35. V. M. Ievlev, A. A. Maksimenko, S. V. Kanykin, et al., Kondens. Sredy Mezhfazn. Granitsy, No. 4, 521 (2016).

    Google Scholar 

  36. V. M. Ievlev, K. A. Solntsev, A. I. Dontsov, A. A. Maksimenko, S. V. Kannykin, Tech. Phys. 61, 467 (2016).

    Article  CAS  Google Scholar 

  37. E. C. Arvaniti, M. C. G. Juenger, S. A. Bernal, et al., Mater. Struct. 48, 3687 (2015).

    Article  CAS  Google Scholar 

  38. I. A. Stenina, T. L. Kulova, A. M. Skundin, and A. B. Yaroslavtsev, Mater. Res. Bull. 75, 178 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed using the equipment of the Shared-Use Centers “Analytical Center for the Problems of Deep Oil Refining and Petroleum Chemistry” and “New Petrochemical Processes, Polymer Composites, and Adhesives” at the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation, project no. 19-19-00232; the catalyst synthesis and testing were performed under a state task of the Ministry of Education and Science of the Russian Federation at the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. Yu. Mironova or A. B. Yaroslavtsev.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironova, E.Y., Lytkina, A.A., Ermilova, M.M. et al. Methanol Steam Reforming in a Reactor with a Palladium–Copper Membrane in the Presence of a Nickel–Copper Catalyst. Pet. Chem. 60, 1232–1238 (2020). https://doi.org/10.1134/S0965544120110158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544120110158

Keywords:

Navigation