Skip to main content
Log in

Investigation of the Influence of Sensor Films Made of the Mycelium of Basidiomycetes on the Characteristics of a Me1/AlN/Me2/Diamond Ultrahigh-Frequency Resonator

  • NOVEL RADIO SYSTEMS AND ELEMENTS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Organic films based on extracts of the biomass of basidiomycete strain Ganoderma lucidum are proposed to use as sensor coatings for acoustic gas sensors based on a layered Me1/AlN/Me2/diamond microwave acoustic resonator. A biomass of basidiomycetes is obtained by submerged cultivation in a selected liquid nutrient medium after which biomass extracts are obtained using two-component solvent systems (water/ethanol) with different volumetric ratios. A base technique has been developed and organic films have been created based on the biomass of basidiomycete Ganoderma lucidum on the resonator surface. The morphological properties of the created films are studied using scanning electron microscopy. The Q factor and resonance frequency of the developed layered Me1/AlN/Me2/diamond microwave acoustic resonator are measured. The effect of the created organic films on the parameters of the microwave acoustic resonator is analyzed. A conclusion is drawn that these films can be used as sensor coatings for a corresponding acoustic gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. D. S. Balantine, R. M. White, S. J. Martin, et al., Acoustic Wave Sensors: Theory, Design and Physical and Chemical Applications (Academic, San Diego, 1996).

    Google Scholar 

  2. T. A. Jones and P. Walsh, Sensors: A Comprehensive Survey, Vol. 2: Chemical and Biological Sensors, Part 1, Eds. by W. Göpel, T. A. Jones t, M. Kleitz et al. (VCH, Weinheim, 1992), p. 529.

  3. A. Venema, E. Nieuwkoop, M. J. Vellekoop, et al., Sen. Actuators 10 (1–2), 47 (1986).

    Article  Google Scholar 

  4. C. Caliendo, E. Verona, and A. D' Amico, Gas Sensors, Ed. by G. Sberveglieri, (Kluwer, London, 1992), p. 281.

    Google Scholar 

  5. V. I. Anisimkin, N. V. Voronova, I. E. Kuznetsova, and I. I. Pyataikin, Izv. RAN. Ser. Fiz. 79, 1437 (2015).

    Google Scholar 

  6. V. I. Anisimkin, J. Commun. Technol. Electron. 60, 1037 (2015).

    Article  Google Scholar 

  7. D. C. Nguyen, V. T. Nguyen, V. Q. Vu, et al., Sen. Actuators B. 201, 7 (2014).

    Article  Google Scholar 

  8. V. B. Raj, S. Harpreet, A. T. Nimal, et al., Sen. Actuators B. 178, 636 (2013).

    Article  Google Scholar 

  9. I. V. Anisimkin, Yu. V. Gulyaev, and V. I. Anisimkin, J. Commun. Technol. Electron. 47, 232 (2002).

    Google Scholar 

  10. P. Verma and R. D. S. Yadava, Sen. Actuators B 209, 751 (2015).

    Article  Google Scholar 

  11. K. Sothivelr, F. Bender, F. Josse, et al., ACS Sensors 1 (1), 63 (2016).

    Article  Google Scholar 

  12. M. Penza, E. Milella, and V. I. Anisimkin, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 1125 (1998).

    Article  Google Scholar 

  13. A. De Luca, M. T. Cole, R. H. Hopper, et al., Appl. Phys. Lett. 106, 194101 (2015).

    Article  Google Scholar 

  14. D. T. Phan and G. S. Chung, Int. J. Hydrogen Energy 39, 620 (2014).

    Article  Google Scholar 

  15. W. Xuan, X. He, J. Chen, et al., Nanoscale 7 (16), 7430 (2015).

    Article  Google Scholar 

  16. I. E. Kuznetsova, V. I. Anisimkin, S. P. Gubin, et al., Ultrasonics 81, 135 (2017).

    Article  Google Scholar 

  17. B. Zhan, C. Liu, H. Shi, et al., Appl. Phys. Lett. 104 (23), 243704 (2014).

    Article  Google Scholar 

  18. Y. E. Silina, T. A. Kuchmenko, Y. I. Korenman, et al., J. Analytical Chem. 60, 678 (2005).

    Article  Google Scholar 

  19. I. E. Kuznetsova, B. D. Zaitsev, L. M. Krasnopolskaya, et al., Sensors 20, 2711 (2020).

    Article  Google Scholar 

  20. I. E. Kuznetsova, B. D. Zaitsev, A. M. Shikhabudinov, et al., Sen. Actuators B 243, 525 (2017).

    Article  Google Scholar 

  21. S. Kudo, A. Harada, H. Kubota, et al., ACS Omega 2 (10), 7329 (2017).

    Article  Google Scholar 

  22. M. Hirotani, T. Furuya, and M. Shiro, Phytochemistry 24, 2055 (1985).

    Article  Google Scholar 

  23. T. Nishitoba, H. Sato, K. Oda, et al., Agricultural Biolog. Chem. 52 (1), 211 (1988).

    Google Scholar 

  24. U. Lindequist, W. D. Jülich, and S. Witt, Phytochemistry 114, 102 (2015).

    Article  Google Scholar 

  25. S. Sudheer, I. Alzorqi, S. Manickam, and A. Ali, Bioactive Molecules in Food, Eds. by J.-M. Mérillon, K. G. Ramawat, (Springer-Verlag, Cham, 2018), p. 1863.

  26. B. J. Ma, J. W. Shen, H. Y. Yu, et al., Mycology 1 (2), 92 (2010).

    Article  Google Scholar 

  27. L. M. Krasnopol’skaya, I. V. Belitskii, A. V. Antimonova, and N. Yu. Soboleva, Usp. Med. Mikologii 3, 222 (2004).

    Google Scholar 

  28. G. S. Kino, Acoustic Waves: Devices, Imaging and Analog Signal Processing (Prentice-Hall, Englewood Cliffs, 1988; Mir, Moscow, 1990).

  29. A. Mujahid, A. Afzal, and F. L. Dickert, Sensors 19 (20), 4395 (2019).

    Article  Google Scholar 

  30. B. P. Sorokin, G. M. Kvashnin, A. S. Novoselov, et al., Ultrasonics 78, 162 (2017).

    Article  Google Scholar 

  31. B. P. Sorokin, A. V. Telichko, G. M. Kvashnin, V. S. Bormashov, and V. D. Blank, Acoust. Phys. 61, 669 (2015).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (project no. 19-79-00173).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Smirnov or I. E. Kuznetsova.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.V., Asafiev, N.O., Sorokin, B.P. et al. Investigation of the Influence of Sensor Films Made of the Mycelium of Basidiomycetes on the Characteristics of a Me1/AlN/Me2/Diamond Ultrahigh-Frequency Resonator. J. Commun. Technol. Electron. 65, 1345–1351 (2020). https://doi.org/10.1134/S1064226920110169

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226920110169

Navigation