Skip to main content
Log in

Crystallographic Features of Decomposition of g-Phase in Austenitic Corrosion-Resistant Steel

  • 95 YEARS OF THE DEPARTMENT OF HEAT TREATMENT AND PHYSICS OF METALS OF THE URAL FEDERAL UNIVERSITY
  • Published:
Metal Science and Heat Treatment Aims and scope

The EBSD technique is used to study the structural and textural states in an austenitic corrosion-resistant steel of type Kh18N9 after long-term service in a tube at high temperatures. It is shown that the grains of the α-phase nucleate on coherent twin boundaries (Σ3 of the CSL model) between austenite grains, which determines their unique crystallographic orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. H. K. D. H. Bhadeshia, “Martensite and bainite in steels: Transformation mechanisms & mechanical properties,” J. De Physique, IV, JP, 7(5), C5-367 – C5-376 (1997).

    Google Scholar 

  2. Y. Adachi, M. Wakita, H. Beladi, and P. D. Hodgson, “The formation of ultrafine ferrite through static transformation in low carbon steels,” Acta Mater., 55, 4925 – 4934 (2007).

    Article  CAS  Google Scholar 

  3. R. Shukla, S. K. Ghosh, D. Chakrabarti, and S. Chatterjee, “Microstructure, texture, property relationship in thermo-mechanically processed ultra-low carbon micro alloyed steel for pipe line application,” Mater. Sci. Eng., 587(10), 201 – 208 (2013).

    Article  CAS  Google Scholar 

  4. W. Gong, Y. Tomota, Y. Adachi, et al., “Effects of ausforming temperature on bainite transformation, microstructure and variant selection in nanobainite steel,” Acta Mater., 61(11), 4142 – 4154 (2013).

    Article  CAS  Google Scholar 

  5. K. D. Zilnyk, V. B. Oliveira, H. R. Z. Sandim, et al., “Martensitic transformation in Eurofer-97 and ODS-Eurofer steels. A comparative study,” J. Nucl. Mater., 360 – 367 (2015).

  6. N. Nakada, H. Ito, Y. Matsuoka, et al., “Deformation-induced martensitic transformation behavior in cold-rolled and cold-drawn type 316 stainless steels,” Acta Mater., 58(3), 895 – 903 (2010).

    Article  CAS  Google Scholar 

  7. L. Cho, E. J. Seo, C. Bruno, and B. C. De Cooman, “Near-Ac3 austenitized ultra-fine-grained quenching and partitioning (Q&P) steel,” Scr. Mater., 123, 69 – 72 (2016).

    Article  CAS  Google Scholar 

  8. I. K. Razumov, Yu. N. Gornostyrev, and M. I. Katsnelson, “To the theory of phase transformations in iron and steel based on first-principles approaches,” Fiz. Met. Metalloved., 118(4), 380 – 408 (2017).

    Google Scholar 

  9. S. Morito, H. Tanaka, K. Konishi, et al., “The morphology and crystallography of lath martensite in Fe – C alloys,” Acta Mater., 51, 1789 – 1799 (2003).

    Article  CAS  Google Scholar 

  10. R. Decocker, R. Petrov, P. Gorbenko, and L. Kestens, “Quantitative evaluation of the crystallographic relation in a martensitic transformation in an Fe – 28% Ni alloy,” in: Evolution of Deformation Microstructures in 3D, Proc. 25th RisØ Int. Symp. on Materials Science (2004), pp. 275 – 281.

  11. H. Kitahara, R. Ueji, M. Ueda, et al., “Crystallographic analysis of plate martensite in Fe – 28% at.% Ni by Fe-SEM/EBSD,” Mater. Charact., 54, 378 – 386 (2005).

    Article  CAS  Google Scholar 

  12. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, “Crystallographic features of lath martensite in low-carbon steel,” Acta Mater., 54, 1279 – 1288 (2006).

    Article  CAS  Google Scholar 

  13. A. Shibata, H. Jafarian, and N. Tsuji, “Microstructure and crystallographic features of martensite transformed from ultrafine-grained austenite in Fe24Ni0.3C alloy,” Mater. Trans., 53(1), 81 – 86 (2012).

    Article  CAS  Google Scholar 

  14. T. Tomida and M. Wakita, “Transformation texture in hot-rolled steel sheets and its quantitative prediction,” ISIJ Int., 52(4), 601 – 609 (2012).

    Article  CAS  Google Scholar 

  15. V. A. Yardley and E, J. Payton, “Austenite-martensite/bainite orientation relationship: characterization parameters and their application,” Mater. Sci. Technol., 30(9), 1125 – 1130 (2014).

    Article  CAS  Google Scholar 

  16. V. M. Gundyrev, V. I. Zeldovich, and V. M. Schastlivtsev, “Crystallographic analysis of martensitic transformation in medium-carbon steel with lath martensite,” Fiz. Met. Metalloved., 117(10), 1052 – 1062 (2016).

    Google Scholar 

  17. V. M. Gundyrev, V. I. Zeldovich, and V. M. Schastlivtsev, “Orientation relationships and mechanism of martensitic transformation in medium-carbon steel with lath martensite,” Izv. Ross. Akad. Nauk, Ser. Fiz., 81(11), 1435 – 1441 (2017).

    Google Scholar 

  18. Yu. V. Kaletina, I. G. Kabanova, N. Yu. Frolova, et al., “Crystallographic features of the structure of martensite in alloy Ni47Mn42In11,” Fiz. Tverd. Tela, 59(10), 1984 – 1191 (2017).

    Google Scholar 

  19. T. Maitland and S. Sitzman, “Electron backscatter diffraction (EBSD) technique and materials characterization examples,” W. Zhou and Z. L. Wang (eds.), Scanning Microcopy for Nanotechnology Techniques and Applications, Vol. 14, Chap. 2, Springer, Berlin (2007), 522 p.

  20. S. Zaefferer, P. Romano, and F. Friedel, “EBSD as a tool to identify and quantify bainite and ferrite in low alloyed Al-TRIP steels,” J. Microscopy, 230, 499 – 508 (2008).

    Article  CAS  Google Scholar 

  21. A. Albou, M. Galceran, K. Renard, et al., “Nanoscale characterization of the evolution of the twin-matrix orientation in Fe – Mn – C twinning-induced plasticity steel by means of transmission electron microscopy orientation mapping,” Scr. Mater., 68, 400 – 403 (2013).

    Article  CAS  Google Scholar 

  22. G. Gottstein, Physical Foundation of Materials Science, Springer-Verlag, Berlin – Heidelberg (2004), 502 p.

  23. A. Rollett, F. Humphreys, G. S. Rohrer, and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier Ltd. (2004), 658 p.

  24. I. Yu. Pyshmintsev, A. O. Struin, A. M. Gervas’ev, et al., “Effect of crystallographic texture of bainite on fracture of sheets from tube steels obtained by controlled thermomechanical treatment,” Metallurg, No. 4, 57 – 63 (2016).

  25. M. L. Lobanov, M. D. Borodina, S. V. Danilov, et al., “Inheritance of texture under phase transformations in low-carbon low-alloy tube steel after controlled thermomechanical treatment,” Izv. Vyssh. Ucheb. Zaved., Chern. Metall., 60(11), 910 – 918 (2017).

    CAS  Google Scholar 

  26. M. L. Lobanov, Yu. N. Loginov, S. V. Danilov, et al., “Effect of the rate of hot rolling on structure and texture condition of a plate from an aluminum alloy of the Al – Si – Mg system,” Metalloved. Term. Obrab. Met., No. 5, 49 – 54 (2018).

  27. V. I. Pastukhov, A. V. Kozlov, and M. L. Lobanov, “Crystallographic peculiarities of shear α–γ transformation in austenitic stainless steel in the high temperature area,” Trans. Tech. Publ. Solid State Phenom., 284, 253 – 258 (2018).

    Article  Google Scholar 

  28. V. I. Pastukhov, S. A. Averin, V. L. Panchenko, et al., “Application of backscatter electrons for large area imaging of cavities produced by neutron radiation,” J. Nucl. Mater., 480, 289 – 300 (2016).

    Article  CAS  Google Scholar 

  29. Kraposhin, I. Jakovleva, L. Karkina, et al., “Microtwinning as a common mechanism for the martensitic and pearlitic transformations,” J. Alloys Compd., 577, 30 – 36 (2013).

    Article  Google Scholar 

  30. M. A. Zorina, M. L. Lobanov, E. A. Makarova, and G. M. Rusakov, “Texture of primary recrystallization in fcc metal with low stacking fault energy,” Metalloved. Term. Obrab. Met., No. 5, 55 – 63 (2018).

  31. N. Nakada, H. Ito, Y. Matsuoka, et al., “Deformation-induced martensitic transformation behavior in cold-rolled and colddrawn type 316 stainless steels,” Acta Mater., 58, 895 – 903 (2010).

    Article  CAS  Google Scholar 

  32. M. L. Lobanov, G. M. Rusakov, A. A. Redikultsev, et al., “A study of special misorientations in lath martensite of low-carbon steel by the method of orientation microscopy,” Fiz. Met. Metalloved., 117(3), 266 – 271 (2016).

    Google Scholar 

  33. I. Yu. Pyshmintsev, S. M. Butyukov, V. I. Pastukhov, et al., “Evolution of microstructure in stainless martensitic steel for seamless tubing,” in: Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS-2017), AIP Conf. Proc. (2015), pp. 049948-1 – 040048-5.

  34. H. A. Tereshchenko, I. L. Yakovleva, I. G. Kabanova, and D. A. Mirzaev, “Special misorientations in low-temperature bainite of high-carbon manganese-silicon steel obtained under isothermal conditions,” Fiz. Met. Metalloved., 120(9), 954 – 960 (2019).

    Google Scholar 

Download references

The work has been performed with financial support of the Russian Foundation for Basic Research, Grant mol a No. 18-33-00135. The authors are obliged to the contribution of the Program for Support of the Leading Universities of the RF aimed at raising their competitiveness No. 211 of the RF Government No. 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Lobanov.

Additional information

Translated from Metallovedenie i Termicheskaya Obrabotka Metallov, No. 7, pp. 5 – 11, July, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobanov, M.L., Pastukhov, V.I. & Redikultsev, A.A. Crystallographic Features of Decomposition of g-Phase in Austenitic Corrosion-Resistant Steel. Met Sci Heat Treat 62, 423–429 (2020). https://doi.org/10.1007/s11041-020-00579-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11041-020-00579-0

Key words

Navigation