Skip to main content

Advertisement

Log in

Coenzyme Q10 enhances remyelination and regulate inflammation effects of cuprizone in corpus callosum of chronic model of multiple sclerosis

  • Original Paper
  • Published:
Journal of Molecular Histology Aims and scope Submit manuscript

Abstract

Multiple Sclerosis (MS) is a chronic, progressive demyelinating disease of the central nervous system that causes the most disability in young people, besides trauma. Coenzyme Q10 (CoQ10)—also known as ubiquinone—is an endogenous lipid-soluble antioxidant in the mitochondrial oxidative respiratory chain which can reduce oxidative stress and inflammation, the processes associated with demyelination in MS. Cuprizone (CPZ) intoxication is a well-established model of inducing MS, best for studying demyelination—remyelination. In this study, we examined for the first time the role of CoQ10 in preventing demyelination and induction of remyelination in the chronic CPZ model of MS. 40 male mice were divided into four groups. 3 group chewed CPZ-containing food for 12 weeks to induce MS. After 4 weeks, one group were treated with CoQ10 (150 mg/kg/day) by daily gavage until the end of the experiment, while CPZ poisoning continued. At the end of 12 weeks, tail suspension test (TST) and open field test (OFT) was taken and animals were sacrificed to assess myelin basic protein (MBP), oligodendrocyte transcription factor-1 (Olig1), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6) by real-time polymerase chain reaction (real-time PCR) and total antioxidant capacity (TAC) and superoxide dismutase (SOD) by Elisa test. Luxol fast blue (LFB) staining was used to evaluate histological changes. CoQ10 administration promoted remyelination in histological findings. MBP and Olig-1 expression were increased significantly in CoQ10 treated group compare to the CPZ-intoxicated group. CoQ10 treatment alleviated stress oxidative status induced by CPZ and dramatically suppress inflammatory biomarkers. CPZ ingestion made no significant difference between normal control group and the CPZ-intoxicated group in TST and OFT. CoQ10 can enhance remyelination in the CPZ model and potentially might have same effects in MS patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akassoglou K, Bauer J, Kassiotis G, Pasparakis M, Lassmann H, Kollias G, Probert L (1998) Oligodendrocyte apoptosis and primary demyelination induced by local TNF/p55TNF receptor signaling in the central nervous system of transgenic mice: models for multiple sclerosis with primary oligodendrogliopathy. Am J Pathol 153(3):801–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghoff SA, Düking T, Spieth L, Winchenbach J, Stumpf SK, Gerndt N, Saher G (2017) Blood-brain barrier hyperpermeability precedes demyelination in the cuprizone model. Acta Neuropathol Commun 5(1):94

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Boggs J (2006) Myelin basic protein: a multifunctional protein. Cell Mol Life Sci CMLS 63(17):1945–1961

    Article  CAS  PubMed  Google Scholar 

  • Bölcskei K, Kriszta G, Sághy É, Payrits M, Sipos É, Vranesics A, Komoly S (2018) Behavioural alterations and morphological changes are attenuated by the lack of TRPA1 receptors in the cuprizone-induced demyelination model in mice. J Neuroimmunol 320:1–10

    Article  PubMed  CAS  Google Scholar 

  • Boyd A, Zhang H, Williams A (2013) Insufficient OPC migration into demyelinated lesions is a cause of poor remyelination in MS and mouse models. Acta Neuropathol 125(6):841–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane FL (2001) Biochemical functions of coenzyme Q10. J Am Coll Nutr 20(6):591–598

    Article  CAS  PubMed  Google Scholar 

  • Dahri M, Tarighat-Esfanjani A, Asghari-Jafarabadi M, Hashemilar M (2019) Oral coenzyme Q10 supplementation in patients with migraine: effects on clinical features and inflammatory markers. Nutr Neurosci 22(9):607–615

    Article  CAS  PubMed  Google Scholar 

  • Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15(9):545–558

    Article  CAS  PubMed  Google Scholar 

  • Doll S, Freitas FP, Shah R, Aldrovandi M, da Silva MC, Ingold I et al (2019) FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575:693–698

    Article  CAS  PubMed  Google Scholar 

  • Dutta R, McDonough J, Yin X, Peterson J, Chang A, Torres T, Fox RJ (2006) Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Ann Neurol 59(3):478–489

    Article  CAS  PubMed  Google Scholar 

  • Frid K, Einstein O, Friedman-Levi Y, Binyamin O, Ben-Hur T, Gabizon R (2015) Aggregation of MBP in chronic demyelination. Ann Clin Transl Neurol 2(7):711–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frischer JM, Bramow S, Dal-Bianco A, Lucchinetti CF, Rauschka H, Schmidbauer M, Lassmann H (2009) The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 132(5):1175–1189

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghaiad HR, Nooh MM, El-Sawalhi MM, Shaheen AA (2017) Resveratrol promotes remyelination in cuprizone model of multiple sclerosis: biochemical and histological study. Mol Neurobiol 54(5):3219–3229

    Article  CAS  PubMed  Google Scholar 

  • Gilgun-Sherki Y, Melamed E, Offen D (2004) The role of oxidative stress in the pathogenesis of multiple sclerosis: the need for effective antioxidant therapy. J Neurol 251(3):261–268

    Article  CAS  PubMed  Google Scholar 

  • Hernández-Camacho JD, Bernier M, López-Lluch G, Navas P (2018) Coenzyme Q10 supplementation in aging and disease. Front Physiol 9:44

    Article  PubMed  PubMed Central  Google Scholar 

  • Jhelum P, Santos-Nogueira E, Teo W, Haumont A, Lenoël I, Stys PK, David S (2020) Ferroptosis mediates cuprizone-induced loss of oligodendrocytes and demyelination. J Neurosci. https://doi.org/10.1523/JNEUROSCI.1749-20.2020

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamzalov S, Sumien N, Forster MJ, Sohal RS (2003) Coenzyme Q intake elevates the mitochondrial and tissue levels of coenzyme Q and α-tocopherol in young mice. J Nutr 133(10):3175–3180

    Article  CAS  PubMed  Google Scholar 

  • Kashani IR, Chavoshi H, Pasbakhsh P, Hassani M, Omidi A, Mahmoudi R, Zendedel A (2017) Protective effects of erythropoietin against cuprizone-induced oxidative stress and demyelination in the mouse corpus callosum. Iran J Basic Med Sci 20(8):886

    PubMed  PubMed Central  Google Scholar 

  • Kipp M, Clarner T, Dang J, Copray S, Beyer C (2009) The cuprizone animal model: new insights into an old story. Acta Neuropathol 118(6):723–736

    Article  PubMed  Google Scholar 

  • Kondo MA, Fukudome D, Smith DR, Gallagher M, Kamiya A, Sawa A (2016) Dimensional assessment of behavioral changes in the cuprizone short-term exposure model for psychosis. Neurosci Res 107:70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Kaur H, Devi P, Mohan V (2009) Role of coenzyme Q10 (CoQ10) in cardiac disease, hypertension and Meniere-like syndrome. Pharmacol Ther 124(3):259–268

    Article  CAS  PubMed  Google Scholar 

  • Kwong LK, Kamzalov S, Rebrin I, Bayne A-CV, Jana CK, Morris P, Sohal RS (2002) Effects of coenzyme Q10 administration on its tissue concentrations, mitochondrial oxidant generation, and oxidative stress in the rat. Free Radical Biol Med 33(5):627–638

    Article  CAS  Google Scholar 

  • Lassmann H (2013) Pathology and disease mechanisms in different stages of multiple sclerosis. J Neurol Sci 333(1–2):1–4

    Article  CAS  PubMed  Google Scholar 

  • Li Z, He Y, Fan S, Sun B (2015) Clemastine rescues behavioral changes and enhances remyelination in the cuprizone mouse model of demyelination. Neurosci Bull 31(5):617–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linares D, Taconis M, Mana P, Correcha M, Fordham S, Staykova M, Willenborg DO (2006) Neuronal nitric oxide synthase plays a key role in CNS demyelination. J Neurosci 26(49):12672–12681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner M, Heine S, Haastert K, Garde N, Fokuhl J, Linsmeier F, Stangel M (2008) Sequential myelin protein expression during remyelination reveals fast and efficient repair after central nervous system demyelination. Neuropathol Appl Neurobiol 34(1):105–114

    CAS  PubMed  Google Scholar 

  • Liu Q, Lv H-W, Yang S, He Y-Q, Ma Q-R, Liu J (2020) NEP1-40 alleviates behavioral phenotypes and promote oligodendrocyte progenitor cell differentiation in the hippocampus of cuprizone-induced demyelination mouse model. Neurosci Lett. https://doi.org/10.1016/j.neulet.2020.134872

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717

    Article  CAS  PubMed  Google Scholar 

  • Maes M, Yirmyia R, Noraberg J, Brene S, Hibbeln J, Perini G, Maj M (2009) The inflammatory & neurodegenerative (I&ND) hypothesis of depression: leads for future research and new drug developments in depression. Metab Brain Dis 24(1):27–53

    Article  CAS  PubMed  Google Scholar 

  • Mao P, Reddy PH (2010) Is multiple sclerosis a mitochondrial disease? Biochim Biophys Acta Mol Basis Dis 1802(1):66–79

    Article  CAS  Google Scholar 

  • McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S (2004) Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10. Toxicol Appl Pharmacol 201(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • McGarry A, McDermott M, Kieburtz K, de Blieck EA, Beal F, Marder K, Mallonee WM (2017) A randomized, double-blind, placebo-controlled trial of coenzyme Q10 in Huntington disease. Neurology 88(2):152–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller E, Walczak A, Saluk J, Ponczek MB, Majsterek I (2012) Oxidative modification of patient’s plasma proteins and its role in pathogenesis of multiple sclerosis. Clin Biochem 45(1–2):26–30

    Article  CAS  PubMed  Google Scholar 

  • Othman A, Frim DM, Polak P, Vujicic S, Arnason BG, Boullerne AI (2011) Olig1 is expressed in human oligodendrocytes during maturation and regeneration. Glia 59(6):914–926

    Article  PubMed  Google Scholar 

  • Özenci V, Kouwenhoven M, Huang YM, Kivisäkk P, Link H (2000) Multiple sclerosis is associated with an imbalance between tumour necrosis factor-alpha (TNF-α)-and IL-10-secreting blood cells that is corrected by interferon-beta (IFN-β) treatment. Clin Exp Immunol 120(1):147–153

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandur E, Pap R, Varga E, Jánosa G, Komoly S, Fórizs J, Sipos K (2019) Relationship of iron metabolism and short-term cuprizone treatment of C57BL/6 mice. Int J Mol Sci 20(9):2257

    Article  CAS  PubMed Central  Google Scholar 

  • Papucci L, Schiavone N, Witort E, Donnini M, Lapucci A, Tempestini A, Carella G (2003) Coenzyme q10 prevents apoptosis by inhibiting mitochondrial depolarization independently of its free radical scavenging property. J Biol Chem 278(30):28220–28228

    Article  CAS  PubMed  Google Scholar 

  • Pasquini L, Calatayud C, Una AB, Millet V, Pasquini J, Soto E (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32(2):279–292

    Article  CAS  PubMed  Google Scholar 

  • Plant SR, Arnett HA, Ting JPY (2005) Astroglial-derived lymphotoxin-α exacerbates inflammation and demyelination, but not remyelination. Glia 49(1):1–14

    Article  PubMed  Google Scholar 

  • Praet J, Guglielmetti C, Berneman Z, Van der Linden A, Ponsaerts P (2014) Cellular and molecular neuropathology of the cuprizone mouse model: clinical relevance for multiple sclerosis. Neurosci Biobehav Rev 47:485–505

    Article  CAS  PubMed  Google Scholar 

  • Rahmati-Ahmadabad S, Broom DR, Ghanbari-Niaki A, Shirvani H (2019) Effects of exercise on reverse cholesterol transport: a systemized narrative review of animal studies. Life Sci 224:139–148

    Article  CAS  PubMed  Google Scholar 

  • Ramagopalan SV, Sadovnick AD (2011) Epidemiology of multiple sclerosis. Neurol Clin 29(2):207–217

    Article  PubMed  Google Scholar 

  • Salehpour F, Farajdokht F, Cassano P, Sadigh-Eteghad S, Erfani M, Hamblin MR, Mahmoudi J (2019) Near-infrared photobiomodulation combined with coenzyme Q10 for depression in a mouse model of restraint stress: reduction in oxidative stress, neuroinflammation, and apoptosis. Brain Res Bull 144:213–222

    Article  CAS  PubMed  Google Scholar 

  • Sanoobar M, Eghtesadi S, Azimi A, Khalili M, Jazayeri S, Reza Gohari M (2013) Coenzyme Q10 supplementation reduces oxidative stress and increases antioxidant enzyme activity in patients with relapsing–remitting multiple sclerosis. Int J Neurosci 123(11):776–782

    Article  CAS  PubMed  Google Scholar 

  • Sanoobar M, Eghtesadi S, Azimi A, Khalili M, Khodadadi B, Jazayeri S, Aryaeian N (2015) Coenzyme Q10 supplementation ameliorates inflammatory markers in patients with multiple sclerosis: a double blind, placebo, controlled randomized clinical trial. Nutr Neurosci 18(4):169–176

    Article  CAS  PubMed  Google Scholar 

  • Semnani M, Mashayekhi F, Azarnia M, Salehi Z (2017) Effects of green tea epigallocatechin-3-gallate on the proteolipid protein and oligodendrocyte transcription factor 1 messenger RNA gene expression in a mouse model of multiple sclerosis. Folia Neuropathol 55:199–205

    Article  PubMed  Google Scholar 

  • Shults CW, Oakes D, Kieburtz K, Beal MF, Haas R, Plumb S, Carter J (2002) Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional decline. Arch Neurol 59(10):1541–1550

    Article  PubMed  Google Scholar 

  • Soleimani M, Jameie SB, Barati M, Mehdizadeh M, Kerdari M (2014) Effects of coenzyme Q10 on the ratio of TH1/TH2 in experimental autoimmune encephalomyelitis model of multiple sclerosis in C57BL/6. Iran Biomed J 18(4):203

    PubMed  PubMed Central  Google Scholar 

  • Spooren A, Kolmus K, Laureys G, Clinckers R, De Keyser J, Haegeman G, Gerlo S (2011) Interleukin-6, a mental cytokine. Brain Res Rev 67(1–2):157–183

    Article  CAS  PubMed  Google Scholar 

  • Steru L, Chermat R, Thierry B, Simon P (1985) The tail suspension test: a new method for screening antidepressants in mice. Psychopharmacology 85(3):367–370

    Article  CAS  PubMed  Google Scholar 

  • Torkildsen Ø, Brunborg L, Myhr KM, Bø L (2008) The cuprizone model for demyelination. Acta Neurol Scand 117:72–76

    Article  Google Scholar 

  • Varela-López A, Giampieri F, Battino M, Quiles JL (2016) Coenzyme Q and its role in the dietary therapy against aging. Molecules 21(3):373

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Voß EV, Škuljec J, Gudi V, Skripuletz T, Pul R, Trebst C, Stangel M (2012) Characterisation of microglia during de-and remyelination: can they create a repair promoting environment? Neurobiol Dis 45(1):519–528

    Article  PubMed  CAS  Google Scholar 

  • Wallin MT, Culpepper WJ, Nichols E, Bhutta ZA, Gebrehiwot TT, Hay SI, Naghavi M (2019) Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 18(3):269–285

    Article  Google Scholar 

  • Yang X, Dai G, Li G, Yang ES (2010) Coenzyme Q10 reduces β-amyloid plaque in an APP/PS1 transgenic mouse model of Alzheimer’s disease. J Mol Neurosci 41(1):110–113

    Article  CAS  PubMed  Google Scholar 

  • Zahednasab H, Firouzi M, Kaboudanian-Ardestani S, Mojallal-Tabatabaei Z, Karampour S, Keyvani H (2019) The protective effect of rifampicin on behavioral deficits, biochemical, and neuropathological changes in a cuprizone model of demyelination. Cytokine 113:417–426

    Article  CAS  PubMed  Google Scholar 

  • Zendedel A, Beyer C, Kipp M (2013) Cuprizone-induced demyelination as a tool to study remyelination and axonal protection. J Mol Neurosci 51(2):567–572

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Bi X, Adebiyi O, Wang J, Mooshekhian A, Cohen J et al (2019) Venlafaxine improves the cognitive impairment and depression-like behaviors in a cuprizone mouse model by alleviating demyelination and neuroinflammation in the brain. Front Pharmacol. https://doi.org/10.3389/fphar.2019.00332

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the School of Medicine, AJA University of Medical Sciences, Tehran, Iran for their support.

Funding

Authors confrm that they did not receive any fund to do this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beheshteh Abouhamzeh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilian, B., Madadi, S., Fattahi, N. et al. Coenzyme Q10 enhances remyelination and regulate inflammation effects of cuprizone in corpus callosum of chronic model of multiple sclerosis. J Mol Histol 52, 125–134 (2021). https://doi.org/10.1007/s10735-020-09929-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10735-020-09929-x

Keywords

Navigation