Skip to main content
Log in

Intensity-dependent two-photon absorption and its saturation in 2-methyl 4-nitroaniline nanofibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Nonlinear absorption and its optical limiting properties of 2-methyl 4-nitroaniline-polymethylmethacrylate (2M4NA-PMMA) electro-spun nanofibers are investigated by Z-scan technique using Q switched Nd:YAG laser as an excitation source (532 nm, 5 ns, 10 Hz). Open-aperture measurements show that 2M4NA-PMMA nanofibers exhibit reverse saturable absorption. Intensity-dependent two-photon absorption coefficient demonstrates the presence of sequential two-photon absorption process involving real resonant intermediate states. The incorporation and orientation of 2M4NA in PMMA nanofibers are analyzed by XRD and it is found to range from 38 nm to 43 nm of crystallite size. SEM images illustrate the formation of smooth fibers using electrospinning by applying different voltages (12, 14, 17 kV). Ground-state absorption analysis shows that the nanofibers possess maximum absorption around 400 nm with a optical transmittance window (410–1200 nm) in the wide range of entire visible and NIR region. Lower optical limiting threshold (0.97 to 1.79 × 1012 W/m2) of 2M4NA-PMMA nanofibers ensures the suitability of optical fibers as optical limiters towards the development of laser goggles for pulsed green laser.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. P.G. Louie Frobel, S.R. Suresh, S. Mayadevi, S. Sreeja, C. Mukherjee, C.I. Muneera, Intense low threshold nonlinear absorption and nonlinear refraction in a new organic–polymer nanocomposite. Mater. Chem. Phys. 129, 981–989 (2011)

    Article  CAS  Google Scholar 

  2. S. Cai, X. Xiao, X. Ye, W. Li, C. Zheng, Nonlinear optical and optical limiting properties of ultra-long gold nanowires. Mater. Lett. 166, 51–54 (2016)

    Article  CAS  Google Scholar 

  3. L. Boni, D. Correa, in Advances in laser and electro optics, ed. by N. Costa, A. Cartaxo, (Intech publishing, 2010), p. 838

  4. E.M. Garmire, Photonics: linear and nonlinear interactions of laser light and matter. Phys. Today 55, 68–68 (2002)

    Article  Google Scholar 

  5. R. Menzel, Nonlinear Interactions of Light and Matter with Absorption, Photonics (Springer, Berlin, Heidelberg, 2001), pp. 231–232

    Google Scholar 

  6. N. Priyadarshani, T.C. Sabari Girisun, S. Venugopal Rao, Improved femtosecond third-order nonlinear optical properties of thin layered Cu3Nb2O8. Opt. Mater. 88, 586–593 (2019)

    Article  CAS  Google Scholar 

  7. H.S. Nalwa, Organic materials for third-order nonlinear optics. Adv. Mater. 5, 341–358 (1993)

    Article  CAS  Google Scholar 

  8. M. Dadsetani, A.R. Omidi, A DFT study of linear and nonlinear optical properties of 2-Methyl-4-nitroaniline and 2-Amino-4-nitroaniline crystals. J. Phys. Chem. C 119, 16263–16275 (2015)

    Article  CAS  Google Scholar 

  9. G.F. Lipscomb, A.F. Garito, R.S. Narang, A large linear electro-optic effect in a polar organic crystal 2-methyl-4-nitroaniline. Appl. Phys. Lett. 38, 663–665 (1981)

    Article  CAS  Google Scholar 

  10. B.F. Levine, C.G. Bethea, C.D. Thurmond, R.T. Lynch, J.L. Bernstein, An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline. J. Appl. Phys. 50, 2523–2527 (1979)

    Article  CAS  Google Scholar 

  11. T. Alferova, N. Elander, Electronic excitations and first hyperpolarizability of 2-methyl-4-nitroaniline clusters. Int. J. Quantum.Chem. 90, 1378–1387 (2002)

    Article  CAS  Google Scholar 

  12. J.L. Bredas, C. Adant, P. Tackx, A. Persoons, B.M. Pierce, Third-order nonlinear optical response in organic materials: theoretical and experimental aspects. Chem. Rev. 94, 243–278 (1994)

    Article  CAS  Google Scholar 

  13. J. Hu, K.-Q. Zhang, Chapter 19 – Electrospun nanofibers for optical applications, in Electrospinning: Nanofabrication and Applications, ed. by B. Ding, X. Wang, J. Yu, (William Andrew Publishing, 2019), pp. 603–617

  14. H. Gonçalves, I. Saavedra, M. Ferreira, P. Lopes, E. Gomes, M. Belsley, Efficient second harmonic generation by para-nitroaniline embedded in electro-spun polymeric nanofibres. J. Phys. D Appl. Phys. 51 (2018)

  15. J. Li, H. Li, H. Hu, Y. Zhao, Q. Wang, Preparation and application of polymer nano-fiber doped with nano-particles. Opt. Mater. 40, 49–56 (2015)

    Article  CAS  Google Scholar 

  16. D.V. Isakov, E. de Matos Gomes, L.G. Vieira, T. Dekola, M.S. Belsley, B.G. Almeida, Oriented single-crystal-like molecular arrangement of optically nonlinear 2-methyl-4-nitroaniline in electrospun nanofibers. ACS Nano 5, 73–78 (2011)

    Article  CAS  Google Scholar 

  17. X. Yuan, Y. Zhang, C. Dong, J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polym. Int. 53, 1704–1710 (2004)

    Article  CAS  Google Scholar 

  18. V. Beachley, X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length. Mater. Sci. Eng. C 29, 663–668 (2009)

    Article  CAS  Google Scholar 

  19. R. Ghelich, M. Rad, A. Youzbashi, Study on morphology and size distribution of electrospun NiO-GDC composite nanofibers. J.Eng. Fibers Fabr. 10, 12–19 (2015)

    Google Scholar 

  20. T. Fukuda, T. Sano, S. Hosoya, D.H. Yoon, Growth of 2-methyl-4-nitroaniline (MNA) crystals by the bridgman method. Cryst. Res. Technol. 29, 971–974 (1994)

    Article  CAS  Google Scholar 

  21. Z. Nie, K.-S. Lim, H. Lee, M. Lee, T. Kabayashi, Femtosecond laser induced photoluminescence in poly(methyl methacrylate) and three-dimensional optical storage. J. Lumin. 131, 266–270 (2011)

    Article  CAS  Google Scholar 

  22. S. Sharma, R. Vyas, S. Shrivastava, Y.K. Vijay, Effect of swift heavy ion irradiation on photoluminescence properties of ZnO/PMMA nanocomposite films. Phys. B Condens. Matter 406, 3230–3233 (2011)

    Article  CAS  Google Scholar 

  23. L. Irimpan, V.P.N. Nampoori, P. Radhakrishnan, Optical limiting in ZnO nanocomposites. Sci. Adv. Mater. 2, 578–582 (2010)

    Article  CAS  Google Scholar 

  24. S. Requena, S. Lacoul, Y.M. Strzhemechny, Luminescent properties of surface functionalized BaTiO3 embedded in poly(methyl methacrylate). Mater. 7, 471–483 (2014)

    Article  CAS  Google Scholar 

  25. H. Huan, L. Chen, X. Ye, Strain effect on the electronic and optical properties of CdSe nanowires. Nanoscale Res. Lett. 12, 178 (2017)

    Article  CAS  Google Scholar 

  26. A. Kumar, R. Jose, K. Fujihara, J. Wang, S. Ramakrishna, Structural and optical properties of electrospun TiO2 nanofibers. Chem. Mater. 19, 6536 (2007)

    Article  CAS  Google Scholar 

  27. B. Dickens, J.W. Martin, D. Waksman, Analysis of damage profiles in poly (methyl methacrylate) in terms of oxygen diffusion and consumption. Polym. Degrad. Stab. 15, 265–279 (1986)

    Article  CAS  Google Scholar 

  28. X.T. Cao, L.G. Bach, M.R. Islam, K.T. Lim, A simple synthesis, characterization, and properties of poly(methyl methacrylate) grafted CdTe nanocrystals. Mol. Cryst. Liq. Cryst. 618, 111–119 (2015)

    Article  CAS  Google Scholar 

  29. A.K. Kole, S. Gupta, P. Kumbhakar, P.C. Ramamurthy, Nonlinear optical second harmonic generation in ZnS quantum dots and observation on optical properties of ZnS/PMMA nanocomposites. Opt. Commun. 313, 231–237 (2014)

    Article  CAS  Google Scholar 

  30. P. Poornesh, G. Umesh, P.K. Hegde, M.G. Manjunatha, K.B. Manjunatha, A.V. Adhikari, Studies on third-order nonlinear optical properties and reverse saturable absorption in polythiophene/poly (methylmethacrylate) composites. Appl.Phys.B. 97, 117–124 (2009)

    Article  CAS  Google Scholar 

  31. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. van Stryland, Sensitive measurement of optical nonlinearities using a single beam. IEEE J. Quantum Electron. 26, 760 (1990)

    Article  CAS  Google Scholar 

  32. S. Perumbilavil, P. Sankar, T. Priya Rose, R. Philip, White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Appl. Phys. Lett. 107, 051104 (2015)

    Article  CAS  Google Scholar 

  33. S. Shettigar, K. Chandrasekharan, G. Umesh, B.K. Sarojini, B. Narayana, Studies on nonlinear optical parameters of bis-chalcone derivatives doped polymer. Polymer. 47, 3565–3567 (2006)

    Article  CAS  Google Scholar 

  34. X. Sun, R. Shen, J. He, Q. Ouyang, The synthesis and nonlinear optical properties of NiS2/MoS2 composites. Opt. Mater. 98, 109421 (2019)

    Article  CAS  Google Scholar 

  35. P. Poornesh, P.K. Hegde, G. Umesh, M.G. Manjunatha, K.B. Manjunatha, A.V. Adhikari, Nonlinear optical and optical power limiting studies on a new thiophene-based conjugated polymer in solution and solid PMMA matrix. Opt. Laser Technol. 42, 230–236 (2010)

    Article  CAS  Google Scholar 

  36. R. Sun, Y.-T. Lu, B.-L. Yan, J.-M. Lu, X.-Z. Wu, Y.-L. Song, J.-F. Ge, Third-order nonlinear optical properties of the poly(methyl methacrylate)-phenothiazinium dye hybrid thin films. Thin Solid Films 551, 153–157 (2014)

    Article  CAS  Google Scholar 

  37. G.S. Boltaev, D.J. Fu, B.R. Sobirov, M.S. Smirnov, O.V. Ovchinnikov, A.I. Zvyagin, R.A. Ganeev, Optical limiting, nonlinear refraction and nonlinear absorption of the associates of Cd0.5Zn0.5S quantum dots and dyes. Opt. Express. 26, 13865 (2018)

    Article  CAS  Google Scholar 

  38. P.T. Anusha, D. Swain, S. Hamad, L. Giribabu, T.S. Prashant, S.P. Tewari, S.V. Rao, Ultrafast excited-state dynamics and dispersion studies of third-order optical nonlinearities in novel corroles. J. Phys. Chem. C 116, 17828–17837 (2012)

    Article  CAS  Google Scholar 

  39. S. Couris, E. Koudoumas, A. Ruth, S. Leach, Concentration and wavelength dependence of the effective third-order susceptibility and optical limiting of C60 in toluene solution. J. Phys.B. At. Mol. Opt.Phys. 28, 4537 (1999)

    Article  Google Scholar 

  40. J. Hein, H. Bergner, M. Lenzner, S. Rentsch, Determination of real and imaginary part of χ(3) of thiophene oligomers using the z-scan technique. Chem.Phys. 179, 543–548 (1994)

    Article  CAS  Google Scholar 

  41. B. Gu, Y.-X. Fan, J. Chen, H.-T. Wang, J. He, W. Ji, Z-scan theory of two-photon absorption saturation and experimental evidence. J. Appl.Phys. 102, 083101–083101 (2007)

    Article  CAS  Google Scholar 

  42. S.M. Kirkpatrick, R.R. Naik, M.O. Stone, Nonlinear saturation and determination of the two-photon absorption cross section of green fluorescent protein. J. Phys. Chem. B. 105, 2867–2873 (2001)

    Article  CAS  Google Scholar 

  43. G.S. He, G.C. Xu, P.N. Prasad, B.A. Reinhardt, J.C. Bhatt, A.G. Dillard, Two-photon absorption and optical-limiting properties of novel organic compounds. Opt. Lett. 20, 435–437 (1995)

    Article  CAS  Google Scholar 

  44. L.W. Tutt, T.F. Boggess, A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials. Prog. Quantum. Electron. 17, 299–338 (1993)

    Article  CAS  Google Scholar 

  45. E.M. García-Frutos, S.M. O'Flaherty, E.M. Maya, G. de la Torre, W. Blau, P. Vázquez, T. Torres, Alkynyl substituted phthalocyanine derivatives as targets for optical limiting. J. Mater. Chem. 13, 749–753 (2003)

    Article  CAS  Google Scholar 

  46. F.Z. Henari, Optical switching in organometallic phthalocyanine. J. Opt. A. Pure. Appl. Op. 3, 188–190 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author R. Nagalakshmi gratefully acknowledges science and Engineering Research Board (SERB), statutory board, Department of Science & Technology, Govt. of India for supporting this work under research work (No: EMR/2016/005324). The author C. Yogeswari also thanks SERB for awarding SRF in the project and continued financial support. The authors highly acknowledge Mr. Nilesh Kulkarni for XRD measurements, Department of Condensed Matter Physics, Tata Institute of Fundamental Research, Mumbai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Nagalakshmi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yogeswari, C., Hijas, K.M., Abith, M. et al. Intensity-dependent two-photon absorption and its saturation in 2-methyl 4-nitroaniline nanofibers. J Mater Sci: Mater Electron 32, 360–372 (2021). https://doi.org/10.1007/s10854-020-04786-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04786-6

Navigation