Skip to main content
Log in

Microwave-Assisted Synthesis of Silver Nanoparticles: Effect of Reaction Temperature and Precursor Concentration on Fluorescent Property

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The fluorescent silver nanoparticles were synthesized using trisodium citrate as a reducing and stabilizing agent in a microwave-assisted reduction process. The influence of synthesizing parameters such as reaction duration, temperature, and trisodium citrate concentration (100, 200, and 400 ppm) were examined on the characteristics and fluorescent properties of synthesized silver nanoparticles (AgNPs). The formation of AgNPs was studied by UV–Vis absorption spectroscopy, X-ray diffraction, ATR-FTIR spectra, and scanning electron microscopy. The low concentration compared to the high concentration of trisodium citrate resulted in a prolonged reduction process, and also the high concentration resulted in the formation of smaller AgNPs (44 nm). The fluorescence emission spectra of the synthesized colloidal AgNPs demonstrated a quite explicit emission peak centered around 335 nm. However, the higher reaction temperature (above 100 °C) resulted in a sharp and narrow emission peak. The synthesized silver nanoparticles exhibited a suitable fluorescent property, which was reliant on the size of synthesized AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Mooradian (1969). Phys. Rev. Lett. 22, 185–187.

    CAS  Google Scholar 

  2. A. Abdullah and S. Annapoorni (2005). Pramana. 65, 815–819.

    CAS  Google Scholar 

  3. S. Eustis and M. A. El-Sayed (2006). Chem. Soc. Rev. 35, 209–217.

    CAS  PubMed  Google Scholar 

  4. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas (2007). Nano Lett. 7, (2), 496–501.

    CAS  PubMed  Google Scholar 

  5. O. S. Wolfbeis (2015). Chem. Soc. Rev. 44, 4743–4768.

    CAS  PubMed  Google Scholar 

  6. I. Díez, M. Pusa, S. Kulmala, H. Jiang, A. Walther, A. S. Goldmann, A. H. E. Müller, O. Ikkala, and R. H. A. Ras (2009). Angew. Chemie Int. Ed. 48, (12), 2122–2125.

    Google Scholar 

  7. M. Montazer, H. Barani, V. Dutschk, and H.-G. Braun (2014). IET Nanobiotechnol 8, (4), 282–289.

    PubMed  Google Scholar 

  8. M. Nasiriboroumand, M. Montazer, and H. Barani (2018). J. Photochem. Photobiol. B Biol. 179, 98–104.

    CAS  Google Scholar 

  9. M. Li, S. K. Cushing, and N. Wu (2015). Analyst. 140, 386–406.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. L. Wang, M. Hasanzadeh Kafshgari, and M. Meunier (2020). Adv. Funct. Mater.. https://doi.org/10.1002/adfm.202005400.

    Article  PubMed  PubMed Central  Google Scholar 

  11. B. A. Ashenfelter, A. Desireddy, S. H. Yau, T. Goodson, and T. P. Bigioni (2015). J. Phys. Chem. C 119, (35), 20728–20734.

    CAS  Google Scholar 

  12. E. Khatun, A. Ghosh, P. Chakraborty, P. Singh, M. Bodiuzzaman, P. Ganesan, G. Nataranjan, J. Ghosh, S. K. Pal, and T. Pradeep (2018). Nanoscale. 10, 20033–20042.

    CAS  PubMed  Google Scholar 

  13. S. Vignesh, S. Suganthi, J. Kalyana Sundar, V. Raj, and P. R. Indra Devi (2019). Appl. Surf. Sci. 479, (15), 914–929.

    CAS  Google Scholar 

  14. H. Wang, X. Si, T. Wu, and P. Wang (2019). Open Chem. 17, 884–892.

    CAS  Google Scholar 

  15. J. Zheng, P. R. Nicovich, and R. M. Dickson (2007). Annu. Rev. Phys. Chem. 58, 409–431.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. F. Scollo, M. Seggio, R. L. Torrisi, R. O. Bua, M. Zimbone, A. Contino, and G. Maccarrone (2020). Appl. Nanosci. 10, (4), 1157–1172.

    CAS  Google Scholar 

  17. X. Yuan, M. I. Setyawati, A. S. Tan, C. N. Ong, D. T. Leong, and J. Xie (2013). NPG Asia Mater. 5, e39.

    CAS  Google Scholar 

  18. H. Barani, M. Montazer, T. Toliyat, and N. Samadi (2010). J. Liposome Res. 20, (4), 323–329.

    CAS  PubMed  Google Scholar 

  19. S. Suganthi, S. Vignesh, J. Kalyana Sundar, and V. Raj (2020). Appl. Water Sci. 10, (4), e100.

    Google Scholar 

  20. M. U. Rashid, M. K. H. Bhuiyan, and M. E. Quayum (2013). Dhaka Univ. J. Pharm. Sci. 12, (1), 29–33.

    Google Scholar 

  21. K. Ranoszek-Soliwoda, E. Tomaszewska, E. Socha, P. Krzyczmonik, A. Ignaczak, P. Orlowski, M. Krzyzowska, and G. Celichowski (2017). J. Grobelny 19, (8), e273.

    Google Scholar 

  22. M. Popa, T. Pradell, D. Crespo, and J. M. Calderón-Moreno (2007). Colloids Surfaces A Physicochem. Eng. Asp. 303, (3), 184–190.

    CAS  Google Scholar 

  23. A. Sankaranarayanan, G. Munivel, G. Karunakaran, S. Kadaikunnan, N. S. Alharbi, J. M. Khaled, and D. Kuznetsov (2017). J. Clust. Sci. 28, (3), 995–1008.

    CAS  Google Scholar 

  24. M. Tsuji, S. Gomi, Y. Maeda, M. Matsunaga, S. Hikino, K. Uto, T. Tsuji, and H. Kawazumi (2012). Langmuir 28, (24), 8845–8861.

    CAS  PubMed  Google Scholar 

  25. M. Özyürek, N. Güngör, S. Baki, K. Güçlü, and R. Apak (2012). Anal. Chem. 84, (18), 8052–8059.

    PubMed  Google Scholar 

  26. F. Rao, S. Song, and A. Lopez-Valdivieso (2015). Nano. 10, (2), 1550031.

    CAS  Google Scholar 

  27. N. G. Bastús, F. Merkoçi, J. Piella, and V. Puntes (2014). Chem. Mater. 26, (9), 2836–2846.

    Google Scholar 

  28. M. B. Gawande, S. N. Shelke, R. Zboril, and R. S. Varma (2014). Acc. Chem. Res. 47, (4), 1338–1348.

    CAS  PubMed  Google Scholar 

  29. S. Suganthi, S. Vignesh, S. Mohanapriya, J. Kalyana Sundar, and V. Raj (2019). J. Mater. Sci. Mater. Electron. 30, (16), 15168–15183.

    CAS  Google Scholar 

  30. M. Eshghi, H. Vaghari, Y. Najian, M. J. Najian, H. Jafarizadeh-Malmiri, and A. Berenjian (2018). Antibiotics 7, (3), e68.

    PubMed  Google Scholar 

  31. Y.-J. Zhu and F. Chen (2014). Chem. Rev. 114, (12), 6462–6555.

    CAS  PubMed  Google Scholar 

  32. I. Bilecka and M. Niederberger (2010). Nanoscale. 2, 1358–1374.

    CAS  PubMed  Google Scholar 

  33. B. Hu, S.-B. Wang, K. Wang, M. Zhang, and S.-H. Yu (2008). J. Phys. Chem. C. 112, (30), 11169–11174.

    CAS  Google Scholar 

  34. K. Seku, B. R. Gangapuram, B. Pejjai, K. K. Kadimpati, and N. Golla (2018). J. Nanostructure Chem. 8, (2), 179–188.

    CAS  Google Scholar 

  35. N. M. Bahadur, T. Furusawa, M. Sato, F. Kurayama, I. A. Siddiquey, and N. Suzuki (2011). J. Colloid Interface Sci. 355, (2), 312–320.

    CAS  PubMed  Google Scholar 

  36. S. Joseph and B. Mathew (2014). J. Mol. Liq. 197, 346–352.

    CAS  Google Scholar 

  37. B. Mahltig and H. Miao (2017). J. Coatings Technol. Res. 14, (2), 721–733.

    CAS  Google Scholar 

  38. B. Mahltig, E. Gutmann, M. Reibold, D. C. Meyer, and H. Böttcher (2009). J. Sol-Gel Sci. Technol. 51, (2), 204–214.

    CAS  Google Scholar 

  39. P. Dallas, V. K. Sharma, and R. Zboril (2011). Adv. Colloid Interface Sci. 166, (1–2), 119–135.

    CAS  PubMed  Google Scholar 

  40. L. Kvítek, A. Panáček, J. Soukupová, M. Kolář, R. Večeřová, R. Prucek, M. Holecová, and R. Zbořil (2008). J. Phys. Chem. C. 112, (15), 5825–5834.

    Google Scholar 

  41. Q. Zhou, J. Lv, Y. Ren, J. Chen, D. Gao, Z. Lu, and C. Wang (2017). Text. Res. J. 87, (19), 2407–2419.

    CAS  Google Scholar 

  42. J.-W. Park and J. S. Shumaker-Parry (2014). J. Am. Chem. Soc. 136, (5), 1907–1921.

    CAS  PubMed  Google Scholar 

  43. X. C. Jiang, W. M. Chen, C. Y. Chen, S. X. Xiong, and A. B. Yu (2010). Nanoscale Res. Lett. 6, e32.

    Google Scholar 

  44. X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu (2010). Langmuir 26, (6), 4400–4408.

    CAS  PubMed  Google Scholar 

  45. S. B. Aziz, G. Hussein, M. A. Brza, S. J. Mohammed, R. T. Abdulwahid, S. R. Saeed, and A. Hassanzadeh (2019). Nanomaterials 9, (11), 1557.

    CAS  Google Scholar 

  46. S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan (2011). Plasmonics. 6, (3), 491–506.

    CAS  Google Scholar 

  47. A. Barron, Nanomaterials and Nanotechnology, (OpenStax-CNX, 2013), pp. 62.

  48. H. Barani and S. Rahimpour (2014). Adv. Mater. Sci. Eng. 2014, 497278.

    Google Scholar 

  49. D. K. Bhui, H. Bar, P. Sarkar, G. P. Sahoo, S. P. De, and A. Misra (2009). J. Mol. Liq. 145, (1), 33–37.

    CAS  Google Scholar 

  50. S. Mukherji, S. Bharti, G. Shukla, and S. Mukherji (2019). Phys. Sci. Rev. 4, (1), 20170082.

    Google Scholar 

  51. M. N. Boroumand, M. Montazer, and V. Dutschk (2013). Ind. Textila. 64, (3), 123–128.

    CAS  Google Scholar 

  52. Q. Fu and W. Sun (2001). Appl. Opt. 40, (9), 1354–1361.

    CAS  PubMed  Google Scholar 

  53. J.D. Rhoades, in Methods of Soil Analysis: Part 3 Chemical Methods, ed. By D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (Wiley, 1996) pp. 417–435.

  54. S. N. Aboutorabi, M. Nasiriboroumand, P. Mohammadi, H. Sheibani, and H. Barani (2018). J. Inorg. Organomet. Polym. Mater. 28, 2525–2532.

    CAS  Google Scholar 

  55. S. Agnihotri, S. Mukherji, and S. Mukherji (2014). RSC Adv. 4, 3974–3983.

    CAS  Google Scholar 

  56. J. C. Mohan, G. Praveen, K. P. Chennazhi, R. Jayakumar, and S. V. Nair (2013). J. Exp. Nanosci. 8, (1), 32–45.

    CAS  Google Scholar 

  57. M. Pedroni, F. Piccinelli, T. Passuello, S. Polizzi, J. Ueda, P. Haro-González, L. Martinez-Maestro, D. Jaque, J. García-Solé, M. Bettinelli, and A. Speghini (2013). Cryst. Growth Des. 13, (11), 4906–4913.

    CAS  Google Scholar 

  58. S. S. Shankar, A. Ahmad, and M. Sastry (2003). Biotechnol. Prog. 19, (6), 1627–1631.

    CAS  PubMed  Google Scholar 

  59. W.-T. Wu, Y. Wang, L. Shi, W. Pang, Q. Zhu, G. Xu, and F. Lu (2006). J. Phys. Chem. B. 110, (30), 14702–14708.

    CAS  PubMed  Google Scholar 

  60. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, and S. V. Gaponenko (2012). J. Phys. Chem. C. 116, (19), 10723–10733.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors really thank full to the head of university of Birjand and head of Faculty of Textile and Clothing Technology, Hochschule Niederrhein, University of Applied Science, Mönchengladbach, Germany which was provided the research facility for doing this joint research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Barani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barani, H., Mahltig, B. Microwave-Assisted Synthesis of Silver Nanoparticles: Effect of Reaction Temperature and Precursor Concentration on Fluorescent Property. J Clust Sci 33, 101–111 (2022). https://doi.org/10.1007/s10876-020-01945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01945-x

Keywords

Navigation