Skip to main content
Log in

Thermal conductivity models of sandstone: applicability evaluation and a newly proposed model

  • Original
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

The thermal conductivity (TC) of rock has a general application in safety assessment and engineering optimization of deep geological engineering practices such as geothermal mining and nuclear waste disposal. Determining the TC of rock by using a TC model is a convenient and effective method for such evaluation, and selecting a suitable TC model is key for ensuring accurate calculation results. In this study, we firstly select eight two-phase TC models to evaluate the applicability to sandstone. Secondly, the TC values of sandstones in various porous media such as air, water, and ice are measured by using the transient plane source (TPS) method, and the mineral composition and content were determined by using X-ray diffraction (XRD) and the Cross, Iddings, Pirsson, and Washington (CIPW) norm. Thirdly, the TC values of sandstones in different porous media are also calculated by using the eight models, and their deviations are analyzed to compare their applicability. Finally, by considering of the influence of pore structure on the rock TC, a new TC model referred to as the thermal resistance–connectivity (TRC) model is proposed for sandstone based on pore connectivity, and the mean deviation is compared with the previous model. Several results are obtained. Among the eight common models, the geometric mean model is found to be more accurate than other models regardless of all three states. In particular, for the porous medium filled with ice, the calculated value of the Geometric mean model had the most significant agreement with the measured value. In addition, the mean deviation of the TRC model for all three states is shown to be more consistent with the measured value than the eight models. Therefore, we recommended the TRC model for calculating the TC of sandstone. This study provides a novel method for determining the TC value for deep geological assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdulagatov IM, Emirov SN, Abdulagatova ZZ, Askerov SY (2006) Effect of pressure and temperature on the thermal conductivity of rocks. J Chem Eng Data 51(1):22–33. https://doi.org/10.1021/je050016a

    Article  Google Scholar 

  2. Agari Y, Uno T (1986) Estimation on thermal conductivities of filled polymers. J Appl Polym Sci 32(7):5705–5712. https://doi.org/10.1002/app.1986.070320702

    Article  Google Scholar 

  3. Agari Y, Ueda A, Nagai S (1991) Thermal conductivity of a polyethylene filled with disoriented short-cut carbon fibers. J Appl Polym Sci 43(6):1117–1124. https://doi.org/10.1002/app.1991.070430612

    Article  Google Scholar 

  4. Ahmad N, Phillips WA (1987) Thermal conductivity of ice and ice clathrate. Solid State Commun 63(2):167–171. https://doi.org/10.1016/0038-1098(87)91189-6

    Article  Google Scholar 

  5. Ahn TM (2016) Multiple lines of evidence for performance of the canister and waste form in long-term nuclear waste disposal: reviews. Prog Nucl Energy 93:343–350. https://doi.org/10.1016/j.pnucene.2016.08.020

    Article  Google Scholar 

  6. Alishaev MG, Abdulagatov IM, Abdulagatova ZZ (2012) Effective thermal conductivity of fluid-saturated rocks: experiment and modeling. Eng Geol 135-136:24–39. https://doi.org/10.1016/j.enggeo.2012.03.001

    Article  Google Scholar 

  7. Aurangzeb AZ, Gurmani SF, Maqsood A (2006) Simultaneous measurement of thermal conductivity, thermal diffusivity and prediction of effective thermal conductivity of porous consolidated igneous rocks at room temperature. J Phys D Appl Phys 39(17):3876–3881. https://doi.org/10.1088/0022-3727/39/17/025

    Article  Google Scholar 

  8. Brigaud F, Vasseur G (1989) Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys J Int 98(3):525–542. https://doi.org/10.1111/j.1365-246X.1989.tb02287.x

    Article  Google Scholar 

  9. Brigaud F, Vasseur G, Caillet G (1992) Thermal state in the North Viking Graben (North Sea) determined from oil exploration well data. Geophysics 57(1):69–88. https://doi.org/10.1190/1.1443190

    Article  Google Scholar 

  10. Burger N, Laachachi A, Ferriol M, Lutz M, Toniazzo V, Ruch D (2016) Review of thermal conductivity in composites: mechanisms, parameters and theory. Prog Polym Sci 61:1–28. https://doi.org/10.1016/j.progpolymsci.2016.05.001

    Article  Google Scholar 

  11. Carson JK (2017) Use of simple thermal conductivity models to assess the reliability of measured thermal conductivity data. Int J Refrig 74:458–464. https://doi.org/10.1016/j.ijrefrig.2016.10.024

    Article  Google Scholar 

  12. Carson JK, Lovatt SJ, Tanner DJ, Cleland AC (2005) Thermal conductivity bounds for isotropic, porous materials. Int J Heat Mass Transf 48(11):2150–2158. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.032

    Article  MATH  Google Scholar 

  13. Chapman N, Hooper A (2012) The disposal of radioactive wastes underground. Proc Geol Assoc 123(1):46–63. https://doi.org/10.1016/j.pgeola.2011.10.001

    Article  Google Scholar 

  14. Chaudhary DR, Bhandari RC (1968) Heat transfer through a three-phase porous medium. J Phys D Appl Phys 1(6):815–817. https://doi.org/10.1088/0022-3727/1/6/418

    Article  Google Scholar 

  15. Chopra N, Ray L, Satyanarayanan M, Elangovan R (2018) Evaluate best-mixing model for estimating thermal conductivity for granitoids from mineralogy: a case study for the granitoids of the Bundelkhand craton, Central India. Geothermics 75:1–14. https://doi.org/10.1016/j.geothermics.2018.03.011

    Article  Google Scholar 

  16. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. Rock Phys Phase Relat:105–126. https://doi.org/10.1029/RF003p0105

  17. Cosenza P, Guérin R, Tabbagh A (2003) Relationship between thermal conductivity and water content of soils using numerical modelling. Eur J Soil Sci 54(3):581–588. https://doi.org/10.1046/j.1365-2389.2003.00539.x

    Article  Google Scholar 

  18. Côté J, Konrad J-M (2005) A generalized thermal conductivity model for soils and construction materials. Can Geotech J 42(2):443–458. https://doi.org/10.1139/t04-106

    Article  Google Scholar 

  19. D-w L, D-s G, T-g D, Herbert H (2005) Analysis and calculation of thermal conductivity of rock in deep strata. J Cent S Univ Technol 12(1):114–119. https://doi.org/10.1007/s11771-005-0383-4

    Article  Google Scholar 

  20. Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sust Energ Rev 39:748–764. https://doi.org/10.1016/j.rser.2014.07.113

    Article  Google Scholar 

  21. Fletcher LS, Peterson GP, Schaup R (1991) Thermal conductivity of selected superconducting materials. J Heat Transf 113(1):274–276. https://doi.org/10.1115/1.2910546

    Article  Google Scholar 

  22. Fuchs S, Schütz F, Förster H-J, Förster A (2013) Evaluation of common mixing models for calculating bulk thermal conductivity of sedimentary rocks: correction charts and new conversion equations. Geothermics 47:40–52. https://doi.org/10.1016/j.geothermics.2013.02.002

    Article  Google Scholar 

  23. Gao F, Song Y, Li Z, Xiong F, Chen L, Zhang X, Chen Z, Moortgat J (2018) Quantitative characterization of pore connectivity using NMR and MIP: a case study of the Wangyinpu and Guanyintang shales in the Xiuwu basin, Southern China. Int J Coal Geol 197:53–65. https://doi.org/10.1016/j.coal.2018.07.007

    Article  Google Scholar 

  24. Go G-H, Lee S-R, Kim Y-S (2016) A reliable model to predict thermal conductivity of unsaturated weathered granite soils. Int Commun Heat Mass Transf 74:82–90. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.009

    Article  Google Scholar 

  25. Gong L, Wang Y, Cheng X, Zhang R, Zhang H (2014) A novel effective medium theory for modelling the thermal conductivity of porous materials. Int J Heat Mass Transf 68:295–298. https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.043

    Article  Google Scholar 

  26. Hinai AA, Rezaee R, Esteban L, Labani M (2014) Comparisons of pore size distribution: a case from the Western Australian gas shale formations. J Unconv Oil Gas Resour 8:1–13. https://doi.org/10.1016/j.juogr.2014.06.002

    Article  Google Scholar 

  27. K-I H (1971) Thermal conductivity of rock-forming minerals. J Geophys Res (1896–1977) 76(5):1278–1308. https://doi.org/10.1029/JB076i005p01278

    Article  Google Scholar 

  28. Klaver J, Desbois G, Urai JL, Littke R (2012) BIB-SEM study of the pore space morphology in early mature Posidonia shale from the Hils area, Germany. Int J Coal Geol 103:12–25. https://doi.org/10.1016/j.coal.2012.06.012

    Article  Google Scholar 

  29. Kucukdogan N, Aydin L, Sutcu M (2018) Theoretical and empirical thermal conductivity models of red mud filled polymer composites. Thermochim Acta 665:76–84. https://doi.org/10.1016/j.tca.2018.05.013

    Article  Google Scholar 

  30. LA Aurangzeb K, Maqsood A (2007) Prediction of effective thermal conductivity of porous consolidated media as a function of temperature: a test example of limestones. J Phys D Appl Phys 40(16):4953–4958. https://doi.org/10.1088/0022-3727/40/16/030

    Article  Google Scholar 

  31. Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25(1):21–69. https://doi.org/10.1023/B:IJOT.0000022327.04529.f3

    Article  Google Scholar 

  32. Li C-X, Duan Y-H, Hu W-C (2014) ChemInform abstract: electronic structure, elastic anisotropy, thermal conductivity and optical properties of calcium apatite Ca5(PO4)3X (X: F, Cl or Br). ChemInform 45(52). https://doi.org/10.1002/chin.201452001

  33. Lord Rayleigh Sec. R.S. (1892) LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium. London, Edinburgh Dublin Philos Mag J Sci 34(211):481–502. https://doi.org/10.1080/14786449208620364

  34. Lund JW, Boyd TL (2016) Direct utilization of geothermal energy 2015 worldwide review. Geothermics 60:66–93. https://doi.org/10.1016/j.geothermics.2015.11.004

    Article  Google Scholar 

  35. Luo M, Wood JR, Cathles LM (1994) Prediction of thermal conductivity in reservoir rocks using fabric theory. J Appl Geophys 32(4):321–334. https://doi.org/10.1016/0926-9851(94)90031-0

    Article  Google Scholar 

  36. Maxwell JCAJN (1873) A Treatise on electricity and magnetism. Nature 7:478–480. https://doi.org/10.1038/007478a0

  37. Nakajima A, Shoji A, Yonemori K, Seo N (2016) Novel polymer composite having diamond particles and boron nitride platelets for thermal management of electric vehicle motors. Jpn J Appl Phys 55(2):027101. https://doi.org/10.7567/jjap.55.027101

    Article  Google Scholar 

  38. Orlander T, Adamopoulou E, Jerver Asmussen J, Marczyński AA, Milsch H, Pasquinelli L, Lykke Fabricius I (2018) Thermal conductivity of sandstones from Biot's coefficient. Geophysics 83(5):D173–D185. https://doi.org/10.1190/geo2017-0551.1

  39. Parekh K, Lee HS (2010) Magnetic field induced enhancement in thermal conductivity of magnetite nanofluid. J Appl Phys 107(9):09A310. https://doi.org/10.1063/1.3348387

    Article  Google Scholar 

  40. Popov Y, Tertychnyi V, Romushkevich R, Korobkov D, Pohl J (2003) Interrelations between thermal conductivity and other physical properties of rocks: experimental data. In: Kümpel H-J (ed) Thermo-hydro-mechanical coupling in fractured rock. Birkhäuser Basel, Basel, pp 1137–1161. https://doi.org/10.1007/978-3-0348-8083-1_21

    Chapter  Google Scholar 

  41. Ramazanova AE, Emirov SN (2012) Baric and temperature dependences for the thermal conductivity of sedimentary rocks. Bull Russ Acad Sci Phys 76(10):1152–1156. https://doi.org/10.3103/S1062873812100103

    Article  Google Scholar 

  42. Ramazanova AE, Emirov SN (2012) Effect of pressure and temperature on the thermal conductivity of siltstone and dolomite. Bull Russ Acad Sci Phys 76(1):125–127. https://doi.org/10.3103/S1062873812010248

    Article  Google Scholar 

  43. Sass JH (1965) The thermal conductivity of fifteen feldspar specimens. J Geophys Res (1896–1977) 70(16):4064–4065. https://doi.org/10.1029/JZ070i016p04064

    Article  Google Scholar 

  44. Sass JH, Lachenbruch AH, Munroe RJ (1971) Thermal conductivity of rocks from measurements on fragments and its application to heat-flow determinations. J Geophys Res (1896–1977) 76(14):3391–3401. https://doi.org/10.1029/JB076i014p03391

    Article  Google Scholar 

  45. Shen Y-j, Wang Y-z, X-d Z, Yang G-s, H-l J, T-l R (2018) The influence of temperature and moisture content on sandstone thermal conductivity from a case using the artificial ground freezing(AGF) method. Cold Reg Sci Technol 155:149–160. https://doi.org/10.1016/j.coldregions.2018.08.004

    Article  Google Scholar 

  46. Shen Y, Wang Y, Yang Y, Sun Q, Luo T, Zhang H (2019) Influence of surface roughness and hydrophilicity on bonding strength of concrete-rock interface. Constr Build Mater 213:156–166. https://doi.org/10.1016/j.conbuildmat.2019.04.078

    Article  Google Scholar 

  47. Shen Y, Yang H, Xi J, Yang Y, Wang Y, Wei X (2020) A novel shearing fracture morphology method to assess the influence of freeze–thaw actions on concrete–granite interface. Cold Reg Sci Technol 169. https://doi.org/10.1016/j.coldregions.2019.102900

  48. Sims REH (2004) Renewable energy: a response to climate change. Sol Energy 76(1):9–17. https://doi.org/10.1016/S0038-092X(03)00101-4

    Article  Google Scholar 

  49. Singh R (2011) Predictions of effective thermal conductivity of complex materials. In: Öchsner A, Murch GE (eds) Heat transfer in multi-phase materials. Springer, Berlin, pp 235–273. https://doi.org/10.1007/8611_2010_5

    Chapter  Google Scholar 

  50. Slack GA (1980) Thermal conductivity of ice. Phys Rev B 22(6):3065–3071. https://doi.org/10.1103/PhysRevB.22.3065

    Article  Google Scholar 

  51. Somerton WH, Mossahebi M (1967) Ring heat source probe for rapid determination of thermal conductivity of rocks. Rev Sci Instrum 38(10):1368–1371. https://doi.org/10.1063/1.1720540

    Article  Google Scholar 

  52. Sundberg J, Back P-E, Ericsson LO, Wrafter J (2009) Estimation of thermal conductivity and its spatial variability in igneous rocks from in situ density logging. Int J Rock Mech Min Sci 46(6):1023–1028. https://doi.org/10.1016/j.ijrmms.2009.01.010

    Article  Google Scholar 

  53. Surma F, Geraud Y (2003) Porosity and thermal conductivity of the Soultz-sous-Forêts Granite. Pure Appl Geophys 160(5):1125–1136. https://doi.org/10.1007/PL00012564

    Article  Google Scholar 

  54. Taebi B, Mayer M (2017) By accident or by design? Pushing global governance of nuclear safety. Prog Nucl Energy 99:19–25. https://doi.org/10.1016/j.pnucene.2017.04.014

    Article  Google Scholar 

  55. Tang B, Zhu C, Xu M, Chen T, Hu S (2018) Thermal conductivity of sedimentary rocks in the Sichuan basin, Southwest China. Energy Explor Exploit 37(2):691–720. https://doi.org/10.1177/0144598718804902

    Article  Google Scholar 

  56. Tavman IH (1996) Effective thermal conductivity of granular porous materials. Int Commun Heat Mass Transf 23(2):169–176. https://doi.org/10.1016/0735-1933(96)00003-6

    Article  Google Scholar 

  57. Troschke B, Burkhardt H (1998) Thermal conductivity models fro two-phase systems. Phys Chem Earth 23(3):351–355. https://doi.org/10.1016/S0079-1946(98)00036-6

    Article  Google Scholar 

  58. Votaw J (1989) CRC handbook of chemistry and physics edited by Robert C. Weast. 1st student edition. Med Phys 16(1):145–145. https://doi.org/10.1118/1.596389

  59. Wang J, Carson JK, North MF, Cleland DJ (2006) A new approach to modelling the effective thermal conductivity of heterogeneous materials. Int J Heat Mass Transf 49(17):3075–3083. https://doi.org/10.1016/j.ijheatmasstransfer.2006.02.007

    Article  MATH  Google Scholar 

  60. Wang C, Lai Y, Zhang M, Li S (2018) A generalized thermal conductivity model of geomaterials based on micro-structures. Acta Geotech. https://doi.org/10.1007/s11440-018-0728-4

  61. Whitaker, S. (1999). The method of volume averaging. Springer Science & Business Media. https://doi.org/10.1007/978-94-017-3389-2

  62. Woodside W, Messmer JH (1961) Thermal conductivity of porous media. II consolidated rocks. J Appl Phys 32(9):1699–1706. https://doi.org/10.1063/1.1728420

    Article  Google Scholar 

  63. Woodside W, Messmer JH (1961) Thermal conductivity of porous media. I unconsolidated sands. J Appl Phys 32(9):1688–1699. https://doi.org/10.1063/1.1728419

    Article  Google Scholar 

  64. Yano KH, Mao KS, Wharry JP, Porterfield DM (2018) Investing in a permanent and sustainable nuclear waste disposal solution. Prog Nucl Energy 108:474–479. https://doi.org/10.1016/j.pnucene.2018.07.003

  65. Yu Z, Wei S, Guo J (2019) Fabrication of aligned carbon-fiber/polymer TIMs using electrostatic flocking method. J Mater Sci Mater Electron 30(11):10233–10243. https://doi.org/10.1007/s10854-019-01360-7

    Article  Google Scholar 

  66. Zimmerman RW (1989) Thermal conductivity of fluid-saturated rocks. J Pet Sci Eng 3(3):219–227. https://doi.org/10.1016/0920-4105(89)90019-3

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No.41772333), the Shaanxi Province New-Star Talents Promotion Project of Science and Technology (Grant No.2019KJXX-049) and Natural Science Foundation of Shaanxi Province, China (Grant No.2018JQ5124).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Shen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Wang, X., Wang, Y. et al. Thermal conductivity models of sandstone: applicability evaluation and a newly proposed model. Heat Mass Transfer 57, 985–998 (2021). https://doi.org/10.1007/s00231-020-02995-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-02995-7

Keywords

Navigation