Skip to main content
Log in

Comparative Study of the Effects of Wildfire and Cultivation on Topsoil Properties in the Zagros Forest, Iran

  • DEGRADATION, REHABILITATION, AND CONSERVATION OF SOILS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

This study compares the long-term effects of a wildfire on basic topsoil properties—bulk density, particle-size composition, pH, electrical conductivity, total C and N, inorganic C, cation exchangeable capacity, available N, P, Ca, Mg, and K—in the Zagros oak forest, Iran, with those induced by agricultural activity in a vineyard planted 30 years earlier in place of the forest. The soil, Calcaric Cambisol according to the World Reference Base, was studied in the (i) unburned forest, both inside (FI) and outside (FO) sprout clumps; (ii) burned forest, in areas subjected to high (BHI) or moderate (BMI) severity (both inside sprout clumps) and low (BLO) severity (outside sprout clumps); and (iii) vineyard, both under the foliage of vines (VI) and outside it (VO). In VI, VO, BHI and BMI most soil properties were significantly different from those of the unburned forest. A Hierarchical Cluster Analysis grouped together BHI and BMI and separated their unburned counterparts with 72% and 47% dissimilarity, respectively. The VI and VO treatments in the vineyard were closely related to each other, but separated from their unburned counterparts in the unburned forest soil with 149% and 69% dissimilarity, respectively. Overall, thirty years of farming exerted a stronger impact on the soil than a single, though severe, fire. Nevertheless, severe fire appeared to have a much more significant impact than every single yearly plowing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Albalasmeh, M. Berli, D. S. Shafer, and T. A. Ghezzehei, “Degradation of moist soil aggregates by rapid temperature rise under low intensity fire,” Plant Soil 362 (1–2), 335–344 (2013). https://doi.org/10.1007/s11104-012-1408-z

    Article  Google Scholar 

  2. S. Ayoubi, F. Khormali, K. L. Sahrawat, and A. C. Rodrigues de Lima, “Assessing impacts of land use changes on soil quality indicators in a loessial soil in Golestan province, Iran,” J. Agric. Sci. Technol. 13, 727–742 (2011).

    Google Scholar 

  3. E. Bochet, J. L. Rubio, and J. Poesen, “Modified topsoil islands within patchy Mediterranean vegetation in SE Spain,” Catena 38 (1), 23–44 (1999). https://doi.org/10.1016/S0341-8162(99)00056-9

    Article  Google Scholar 

  4. J. M. Bremner and C. S. Mulvaney, “Nitrogen total,” in Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties, Ed. by A. L. Page, R. H. Miller, and D. R. Keeney (Soil Science Society of America, Madison, WI, 1982) pp. 595–624.

  5. A. Brook and L. Wittenberg, “Ash-soil interface: Mineralogical composition and physical structure,” Sci. Total. Environ. 572, 1403–1413 (2016). https://doi.org/10.1016/j.scitotenv.2016.02.123

    Article  Google Scholar 

  6. L. Caon, V. Ramón Vallejo, C. J. Ritsema, and V. Geissen, “Effects of wildfire on soil nutrients in Mediterranean ecosystems,” Earth-Sci. Rev. 139, 47–58 (2014). https://doi.org/10.1016/j.earscirev.2014.09.001

    Article  Google Scholar 

  7. I. Celik, “Land use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey,” Soil Tillage Res. 83 (2), 270–277 (2005). https://doi.org/10.1016/j.still.2004.08.001

    Article  Google Scholar 

  8. G. Certini, “Fire as a soil-forming factor,” Ambio 43 (2), 191–195 (2014). https://doi.org/10.1007/s13280-013-0418-2

    Article  Google Scholar 

  9. G. Certini, C. Nocentini, H. Knicker, P. Arfaioli, and C. Rumpel, “Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests,” Geoderma 167–168, 148–155 (2011). https://doi.org/10.1016/j.geoderma.2011.09.005

    Article  Google Scholar 

  10. E. N. Chidumayo and L. Kwibisa, “Effect of deforestation on grass biomass and soil nutrient status in Miombo Wood land, Zambia,” Agric. Ecosyst. Environ. 96 (1–3), 97–105 (2003). https://doi.org/10.1016/S0167-8809(02)00229-3

    Article  Google Scholar 

  11. W. W. Covington, L. F. DeBano, and T. G. Huntsberger, “Soil nitrogen changes associated with slash pile burning in pinyon-juniper woodlands,” Forest Sci. 37 (1), 347–355 (1991). https://doi.org/10.1093/forestscience/37.1.347

    Article  Google Scholar 

  12. R. C. Dalal and K.Y. Chan, “Soil organic carbon in rainfed cropping systems of the Australian cereal belt,” Aust. J. Soil Res. 39 (3), 435–464 (2001). https://doi.org/10.1071/SR99042

    Article  Google Scholar 

  13. A. Delgado and R. Scalenghe, “Aspects of phosphorus transfer from soils in Europe,” J. Plant Nutr. Soil Sci. 171 (4), 552–575 (2008). https://doi.org/10.1002/jpln.200625052

    Article  Google Scholar 

  14. B. Duguy, P. Rovira, and R. Vallejo, “Land-use history and fire effects on soil fertility in eastern Spain,” Eur. J. Soil Sci. 58 (1), 83–91 (2007). https://doi.org/10.1111/j.1365-2389.2006.00802.x

    Article  Google Scholar 

  15. H. M. Eriksson, T. Nilsson, and A. Nordin, “Early effects of lime and hardened and non-hardened ashes on pH and electrical conductivity of the forest floor, and relations to some ash and lime qualities,” Scand. J. For. Res. 13, 56–66 (1998).

    Google Scholar 

  16. F. Evrendilek, I. Çelik, and S. Kilic, “Changes in soil organic carbon and other physical soil properties along adjacent Mediterranean forest, grassland, and cropland ecosystems in Turkey,” J. Arid. Environ. 59 (4), 743–752 (2004). https://doi.org/10.1016/j.jaridenv.2004.03.002

    Article  Google Scholar 

  17. Global Soil Security, Ed. by D. J. Field, C. L. S. Morgan, and A. B. McBratney (Springer-Verlag, New York, 2017).

    Google Scholar 

  18. J. P. Field, K. W. Farrish, B. P. Oswald, M. T. Romig, and E. A. Carter, “Forest site preparation effects on soil and nutrient losses in east Texas,” Trans. ASAE 48 (2), 861–869 (2005). https://doi.org/10.13031/2013.18294

    Article  Google Scholar 

  19. I. M. Gabbasova, R. R. Suleimanov, I. K. Khabirov, M. A. Komissarov, M. Fruehauf, P. Liebelt, T. T. Garipov, L. V. Sidorova, and F. Kh. Khaziev, “Temporal changes of eroded soils depending on their agricultural use in the southern Cis-Ural region,” Eurasian Soil Sci. 49, 1204–1210 (2016).https://doi.org/10.1134/S1064229316100070

    Article  Google Scholar 

  20. I. M. Gabbasova, T. T. Garipov, R. R. Suleimanov, M. A. Komissarov, I. K. Khabirov, L. V. Sidorova, F. I. Nazurova, Z. G. Prostyakova, and E. Yu. Kotlugalyamova, “The influence of ground fires on the properties and erosion of forest soils in the Southern Urals (Bashkir State Nature Reserve),” Eurasian Soil Sci. 52, 370–379 (2019). https://doi.org/10.1134/S1064229319040070

    Article  Google Scholar 

  21. G. W. Gee and J. W. Bauder, “Particle-size analysis,” in Methods of Soil Analysis, Part 1: Physical and Mineralogical Methods, Agron. Monogr. vol. 9, Ed. by A. Klute (Soil Science Society of America, Madison, WI, 1986), pp. 383–411. https://doi.org/10.2136/sssabookser5.1.2ed.c15

  22. E. Gimeno-García, V. Andreu, and J. L. Rubio, “Changes inorganic matter, nitrogen, phosphorus and cations as a result of fire and water erosion in a Mediterranean landscape,” Eur. J. Soil Sci. 51 (2), 201–210 (2000). https://doi.org/10.1046/j.1365-2389.2000.00310.x

    Article  Google Scholar 

  23. T. V. Glukhova and A. A. Sirin, “Losses of soil carbon upon a fire on a drained forested raised bog,” Eurasian Soil Sci. 51, 542–549 (2018). https://doi.org/10.1134/S1064229318050034

    Article  Google Scholar 

  24. K. B. Gongalsky, A. S. Zaitsev, D. I. Korobushkin, R. A. Saifutdinov, T. E. Yazrikova, A. I. Benediktova, A. Yu Gorbunova, I. A. Gorshkova, K. O. Butenko, N. V. Kosina, E. V. Lapygina, D. M. Kuznetsova, A. A. Rakhleeva, and S. V. Shakhab, “Diversity of the soil biota in burned areas of southern taiga forests (Tver oblast),” Eurasian Soil Sci. 49, 358–366 (2016). https://doi.org/10.1134/S1064229316030042

    Article  Google Scholar 

  25. A. J. P. Granged, A. Jordan, L. M. Zavala, M. Munoz-Rojas, and J Mataix-Solera, “Short-term effects of experimental fire for a soil under eucalyptus forest (SE Australia),” Geoderma 167–168, 125–134 (2011). https://doi.org/10.1016/j.geoderma.2011.09.011

    Article  Google Scholar 

  26. A. M. Grebennikov and L. G. Markina, “Structural state of migrational-mycelial (typical) agrochernozems of the Kamennaya Steppe on plowed fields of different ages,” Eurasian Soil Sci. 50, 218–228 (2017). https://doi.org/10.1134/S1064229317020090

    Article  Google Scholar 

  27. M. Heydari, A. Rostamy, F. Najafi, and D. C. Dey, “Effect of fire severity on physical and biochemical soil properties in Zagros oak (Quercus brantii Lindl.) forests in Iran,” J. For. Res. 28 (1), 95–104 (2017). https://doi.org/10.1007/s11676-016-0299-x

    Article  Google Scholar 

  28. K. R. Islam and R. R. Weil, “Land use effects on soil quality in a tropical forest ecosystem of Bangladesh,” Agric. Ecosyst. Environ. 79 (1), 9–16 (2000). https://doi.org/10.1016/S0167-8809(99)00145-0

    Article  Google Scholar 

  29. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  30. I. A. Jaiyeoba, “Changes in soil properties due to continuous cultivation in Nigerian semiarid Savannah,” Soil Tillage Res. 70 (1), 91–98 (2003). https://doi.org/10.1016/S0167-1987(02)00138-1

    Article  Google Scholar 

  31. W. J. Johnson and P. S. Curtis, “Effects of forest management on soil C and N storage: meta-analysis,” For. Ecol. Manage. 140 (2–3), 227–238 (2001). https://doi.org/10.1016/S0378-1127(00)00282-6

    Article  Google Scholar 

  32. H. Knicker, “How does fire affect the nature and stability of soil organic nitrogen and carbon? A review,” Biogeochemistry 85, 91–118 (2007). https://doi.org/10.1007/s10533-007-9104-4

    Article  Google Scholar 

  33. M. A. Komissarov and A. Klik, “The impact of no-till, conservation, and conventional tillage systems on erosion and soil properties in Lower Austria,” Eurasian Soil Sci. 53, 503–511 (2020). https://doi.org/10.1134/S1064229320040079

    Article  Google Scholar 

  34. Yu. N. Krasnoshchekov, “Soils of mountainous forests and their transformation under the impact of fires in Baikal region,” Eurasian Soil Sci. 51, 371–384 (2018). https://doi.org/10.1134/S1064229318040099

    Article  Google Scholar 

  35. R. H. Leoppert, and G. L. Suarez, “Carbonates and gypsum,” in Methods of Soil Analysis, Part 3: Chemical Method, Ed. by D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (Soil Science Society of America, Madison, WI, 1996).

  36. E. Yu. Maksimova, A. G. Kudinova, and E. V. Abakumov, “Functional activity of soil microbial communities in post-fire pine stands of Tolyatti, Samara oblast,” Eurasian Soil Sci. 50, 239–245 (2017). https://doi.org/10.1134/S1064229317020119

    Article  Google Scholar 

  37. G. Mastrolonardo, C. Rumpel, C. Forte, S. H. Doerr, and G. Certini, “Abundance and composition of free and aggregate-occluded carbohydrates and lignin in two forest soils as affected by wildfires of different severity,” Geoderma 245–246, 40–51 (2015). https://doi.org/10.1016/j.geoderma.2015.01.006

    Article  Google Scholar 

  38. G. Mastrolonardo, O. Francioso, M. Di Foggia, S. Bonora, C. Forte, and G. Certini, “Soil pyrogenic organic matter characterization by spectroscopic analysis: a study on combustion and pyrolysis residues,” J. Soils Sediments 15 (4), 769–780 (2015). https://doi.org/10.1007/s11368-014-1034-x

    Article  Google Scholar 

  39. G. Mastrolonardo, O. Francioso, M. Di Foggia, S. Bonora, C. Rumpel, and G. Certini, “Application of thermal and spectroscopic techniques to assess fire-induced changes to soil organic matter in a Mediterranean forest,” J. Geochem. Explor. 143, 174–182 (2014). https://doi.org/10.1016/j.gexplo.2014.04.010

    Article  Google Scholar 

  40. E. Møller Hansen and J. Djurhuus, “Nitrate leaching as influenced by soil tillage and catch crop,” Soil Tillage Res. 41 (3–4), 203–219 (1997). https://doi.org/10.1016/S0167-1987(96)01097-5

    Article  Google Scholar 

  41. J. Murphy and J. P. A. Riley, “Modified single solution method for determination of phosphatein natural waters,” Anal. Chim. Acta 27, 31–36 (1962). https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  Google Scholar 

  42. L. E. Nave, E. D. Vance, C. W. Swanston, and P. S. Curtis, “Fire effects on temperate forest soil C and N storage,” Ecol. Appl. 21 (4), 1189–1201 (2011). https://doi.org/10.1890/10-0660.1

    Article  Google Scholar 

  43. A. Paz-González, S. R. Vieira, and M. T. Taboada Castro, “The effect of cultivation on the spatial variability of selected properties of an umbric horizon,” Geoderma 97 (3–4), 273–292 (2000). https://doi.org/10.1016/S0016-7061(00)00066-5

    Article  Google Scholar 

  44. M. Pourreza, S. M. Hosseini, A. A. Safari Sinegani, M. Matinizadeh, and W. A. Dick, “Soil microbial activity in response to fire severity in Zagros oak (Quercus brantii Lindl.) forests, Iran, after one year,” Geoderma 213, 95–102 (2014). https://doi.org/10.1016/j.geoderma.2013.07.024

    Article  Google Scholar 

  45. J. Romanyà, P. Casals, and V. R. Vallejo, “Short-term effects of fire on soil nitrogen availability in Mediterranean grasslands and shrublands growing in old fields,” For. Ecol. Manage. 147, 39–53 (2001). https://doi.org/10.1016/S0378-1127(00)00433-3

    Article  Google Scholar 

  46. D. L. Rowell, Soil Science: Methods and Applications (Longman, Harlow, 1994).

    Google Scholar 

  47. Z. Sharifi, N. Azadi, and G. Certini, “Fire and tillage as degrading factors of soil structure in northern Zagros oak forest west Iran,” Land Degrad. Dev. 28 (3), 1068–1077 (2017). https://doi.org/10.1002/ldr.2649

    Article  Google Scholar 

  48. T. P. Simon and C. C. Morris, “Associated use attainment response between multiple aquatic assemblage indicators for evaluating catchment, habitat, water quality, and contaminants,” J. Ecosyst. 2014, 1–15 (2014). https://doi.org/10.1155/2014/893795

    Article  Google Scholar 

  49. C. R. Stoof, A. I. Gevaert, C. Baver, B. Hassanpour, V. L. Morales, W. Zhang, D. Martin, S. K. Giri, and T. S. Steenhuis, “Can pore-clogging by ash explain post-fire runoff?” Int. J. Wildland Fire 25 (3), 294–305 (2016). https://doi.org/10.1071/WF15037

    Article  Google Scholar 

  50. M. E. Sumner and W. P. Miller, “Cation exchange capacity and exchange coefficients,” in Methods of Soil Analysis, Part 3: Chemical Method, Ed. by D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Sumner (Soil Science Society of America, Madison, WI, 1996) pp. 1201–1229. https://doi.org/10.2136/sssabookser5.3.c40

  51. B. G. Tabachnick and L. S. Fidell, Using Multivariate Statistics (Pearson, Boston, 2013).

    Google Scholar 

  52. T. Terefe, I. Mariscal-Sancho, F. Peregrina, and R. Espejo, “Influence of heating on various properties of six Mediterranean soils: a laboratory study,” Geoderma 143 (3–4), 273–280 (2008). https://doi.org/10.1016/j.geoderma.2007.11.018

    Article  Google Scholar 

  53. T. A. Trofimova, S. I. Korzhov, V. A. Gulevskii, and V. N. Obraztsov, “Assessing the degree of physical degradation and suitability of chernozems for the minimization of basic tillage,” Eurasian Soil Sci. 51, 1080–1085 (2018). https://doi.org/10.1134/S1064229318090120

    Article  Google Scholar 

  54. T. A. Trofimova, S. I. Korzhov, V. A. Gulevskii, and V. N. Obraztsov, “Assessing the degree of physical degradation and suitability of chernozems for the minimization of basic tillage,” Eurasian Soil Sci. 51, 1080–1085 (2018). https://doi.org/10.1134/S1064229318090120

    Article  Google Scholar 

  55. T. G. Vågen, M. A. A. Andrianorofanomezana, and S. Andrianorofanomezana, “Deforestation and cultivation effects on characteristics of Oxisols in the highlands of Madagascar,” Geoderma 131 (1–2), 190–200 (2006). https://doi.org/10.1016/j.geoderma.2005.03.026

    Article  Google Scholar 

  56. C. J. Weston and P. M. Attiwill, “Effects of fire and harvesting on N transformations and mobility in soils of Eucalyptus regnans forests of southeastern Australia,” Oecologia 83 (1), 20–26 (1990). https://doi.org/10.1007/BF00324628

    Article  Google Scholar 

  57. S. Yousefi, S. Mirzaee, and H. Zeinivand, “Investigation deforestation trends in Zagros mountain with using GIS and RS (case study: Marivan),” J. Remote Sens. GIS Nat. Resour. 4 (2), 15–23 (2013).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge residents of the village of Nezhmar for their precious contribution to the research.

Funding

This study was supported by the University of Kurdistan, Iran, grant no. 4114405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Sharifi.

Ethics declarations

The authors declare that they have no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimi, S., Sharifi, Z. & Mastrolonardo, G. Comparative Study of the Effects of Wildfire and Cultivation on Topsoil Properties in the Zagros Forest, Iran. Eurasian Soil Sc. 53, 1655–1668 (2020). https://doi.org/10.1134/S1064229320110113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320110113

Keywords:

Navigation