Skip to main content
Log in

Spatial Distribution of the Components of Carbon Cycle in Soils of Forest Ecosystems of the Northern, Middle, and Southern Taiga of Western Siberia

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

In the course of studies in typical forest ecosystems of the northern, middle, and southern taiga of Western Siberia performed at the peak of the growing season, the spatial variation of soil CO2 emissions and their relationships with the content of extractable and microbial soil carbon and soil hydrothermic parameters were estimated. The studied parameters of the soil carbon cycle are characterized by the high spatial variability in all the studied ecosystems. This fact indicates the need for a detailed investigation of the greenhouse gas soil emission in all ecosystems typical of a given natural zone. There is a statistically significant difference between the soils of the green-moss pine forests and the soils of the lichen pine forest of the northern taiga. In the green-moss pine forest, the carbon content of microbial biomass is 1.5 times higher (195 ± 24 and 127 ± 16 mg C/kg soil, respectively), the content of extractable carbon is 4 times higher (157 ± 25 and 41 ± 5 mg C/kg of soil, respectively), and the CO2 emission is 1.7 times higher (324 ± 20 and 190 ± 10 mg CO2/(m2 h), respectively) than those in the lichen pine forest. In the northern taiga zone, carbon dioxide emissions from soils in the green-moss pine forests are largely determined by the soil temperature; the role of soil moisture is less significant. In the soils of lichen pine forests, the CO2 emission is mainly controlled by the content of extractable carbon. Significant factors influencing the soil СО2 emission in forest ecosystems of the taiga zone are the content of extractable and microbial carbon and hydrothermic parameters of the soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. A. Bobrik, O. Yu. Goncharova, G. V. Matyshak, D. S. Drozdov, and O. E. Ponomareva, “Spatial variability of soil CO2 efflux in the forest-tundra zone of West Siberia (Novy Urengoi): control of abiotic factors,” Earth’s Cryosphere 21 (2), 52–59 (2017).

    Google Scholar 

  2. A. A. Bobrik, O. Yu. Goncharova, G. V. Matyshak, N. M. Petrzhik, and D. S. Drozdov, “Spatial distribution of the components of the carbon cycle of soils and environmental factors in the southern tundra ecosystems on the Tazovsky Peninsula,” Kriosfera Zemli 22 (6), 45–54 (2018).

    Google Scholar 

  3. A. A. Bobrik, O. Yu. Goncharova, G. V. Matyshak, I. M. Ryzhova, and M. I. Makarov, “The effect of geocryological conditions and soil properties on the spatial variation in the CO2 emission from flat-topped peat mounds in the isolated permafrost zone of Western Siberia,” Eurasian Soil Sci. 49, 1355–1365 (2016). https://doi.org/10.1134/S1064229316100045

    Article  Google Scholar 

  4. V. A. Vaganov, E. F. Vedrova, S. V. Verkhovets, S. P. Efremov, T. T. Efremova, V. B. Kruglov, A. A. Onuchin, A. I. Sukhinin, and O. B. Shibistova, “Role of forests and bogs of Siberia in the global carbon cycle,” Sib. Ekol. Zh., No. 4, 631–649 (2005).

  5. V. D. Vasil’evskaya, V. V. Ivanov, and L. G. Bogatyrev, Soils of the North of Western Siberia (Moscow State Univ., Moscow, 1986) [in Russian].

    Google Scholar 

  6. M. V. Glagolev, E. A. Golovatskaya, and N. A. Shnyrev, “Emission of greenhouse gases in Western Siberia,” Sib. Ekol. Zh., No. 2, 197–210 (2007).

  7. O. Yu. Goncharova, G. V. Matyshak, A. A. Bobrik, M. V. Timofeeva, and A. R. Sefilyan, “Assessment of the contribution of root and microbial respiration to the total efflux of CO2 from peat soils and podzols in the north of Western Siberia by the method of component integration,” Eurasian Soil Sci. 52, 206–217 (2019).

    Article  Google Scholar 

  8. G. V. Dobrovol’skii and I. S. Urusevskaya, Soil Geography (Moscow State Univ., Moscow, 2004) [in Russian].

    Google Scholar 

  9. D. G. Zamolodchikov, V. I. Grabovskii, and V. A. Kurts, “Carbon balance management in Russian forests: past, present, and future,” Ustoich. Razvit., No. 2, 23–31 (2014).

  10. L. I. Inisheva, M. A. Sergeeva, and O. N. Smirnov, “Deposition and emission of carbon by mires of Western Siberia,” Nauchn. Dialog. Estestvozn. Ekol., No. 7, 61–74 (2012).

  11. M. S. Kadulin, I. E. Smirnova, and G. N. Koptsyk, “The emission of carbon dioxide from soils of the Pasvik nature reserve in the Kola Subarctic,” Eurasian Soil Sci. 50, 1055–1068 (2017).

    Article  Google Scholar 

  12. K. I. Kobak, Biotic Components of the Carbon Cycle (Gidrometeoizdat, Moscow, 1988) [in Russian].

    Google Scholar 

  13. V. N. Kudeyarov, G. A. Zavarzin, S. A. Blagodatskii, et al., Carbon Pools and Fluxes in Terrestrial Ecosystems of Russia (Nauka, Moscow, 2007) [in Russian].

    Google Scholar 

  14. I. N. Kurganova, Doctoral Dissertation in Biology (Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino, 2010).

  15. I. N. Kurganova and V. N. Kudeyarov, “Assessment of carbon dioxide effluxes from soils of the taiga zone of Russia,” Eurasian Soil Sci. 31, 954–965 (1998).

    Google Scholar 

  16. M. I. Makarov, M. S. Shuleva, T. I. Malysheva, and O. V. Menyailo, “Solubility of the labile forms of soil carbon and nitrogen in K2SO4 of different concentrations,” Eurasian Soil Sci. 46, 369–374 (2013).

    Article  Google Scholar 

  17. A. V. Naumov, Soil Respiration: Components, Ecological Functions, and Geographical Regularities (Siberian Branch, Russian Academy of Sciences, Novosibirsk, 2009) [in Russian].

  18. I. M. Ryzhova and M. A. Podvezennaya, “Spatial variability of the organic carbon pool in soils of forest and steppe biogeocenoses,” Eurasian Soil Sci. 41, 1260–1267 (2008).

    Article  Google Scholar 

  19. O. V. Semenyuk, M. A. Il’yashenko, and A. A. Bobrik, “Evaluation of ecological functions of park soils based on their biological activity,” Probl. Agrokhim. Ekol., No. 3, 35–39 (2013).

  20. A. V. Smagin, Gaseous Phase of Soils (Moscow State Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  21. O. V. Chestnykh, D. G. Zamolodchikov, and A. I. Utkin, “Total pools of biological carbon and nitrogen in soils of Russian forests,” Lesovedenie, No. 4, 30–42 (2004).

    Google Scholar 

  22. A. Bekele, L. Kellman, and H. Beltrami, “Soil profile CO2 concentrations in forested and clear cut sites in Nova Scotia, Canada,” For. Ecol. Manage. 242, 587–597 (2007).

    Article  Google Scholar 

  23. P. C. Brookes, A. Landman, G. Pruden, and D. S. Jenkinson, “Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil,” Soil Biol. Biochem. 17, 837–842 (1985). https://doi.org/10.1016/0038-0717(85)90144-0

    Article  Google Scholar 

  24. M. H. Chantigny, “Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices,” Geoderma 113, 357–380 (2003). https://doi.org/10.1016/S0016-7061(02)00370-1

    Article  Google Scholar 

  25. W. Cheng and R. A. Virginia, “Measurement of microbial biomass in Arctic tundra soils using fumigationextraction and substrate-induced respiration procedures,” Soil Biol. Biochem. 25 (1), 135–141 (1993).

    Article  Google Scholar 

  26. W. Cheng, R. A. Virginia, S. F. Oberbauer, J. D. Tenhunen, C. T. Gillespie, and J. F. Reynolds, “Soil nitrogen, microbial biomass and respiration along an arctic toposequence,” Soil Sci. Soc. Am. J. 62, 654–662 (1998).

    Article  Google Scholar 

  27. M. C. Fisk, K. F. Ruether, and J. B. Yavitt, “Microbial activity and functional composition among northern peatland ecosystems,” Soil Biol. Biochem. 35, 591–602 (2003).

    Article  Google Scholar 

  28. A. Filipchuk, B. Moiseev, N. Malysheva, and V. Strakhov, “Russian forests: a new approach to the assessment of carbon stocks and sequestration capacity,” Environ. Dev. 26, 68–75 (2018).

    Article  Google Scholar 

  29. A. A. Goncharov, K. B. Gongalsky, T. E. Yazrikova, N. V. Kostina, D. I. Korobushkin, M. I. Makarov, and A. S. Zaitsev, “Greenhouse gas-producing soil biological activity in burned and unburned forests along a transect in European Russia,” Appl. Soil Ecol. 148, 103491 (2020).

    Article  Google Scholar 

  30. R. G. Joergensen, J. Wu, and P. C. Brookes, “Measuring soil microbial biomass using an automated procedure,” Soil Biol. Biochem. 43, 873–876 (2011).

    Article  Google Scholar 

  31. E. Köster, K. Köster, F. Berninger, A. Prokushkin, H. Aaltonen, X. Zhou, and J. Pumpanen, “Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost,” J. Environ. Manage. 228, 405–415 (2018).

    Google Scholar 

  32. R. Martens, “Current methods for measuring microbial biomass C in soil: Potentials and limitations,” Biol. Fertil. Soils 19, 87–99 (1995).

    Article  Google Scholar 

  33. C. L. Ping, J. D. Jastrow, M. T. Jorgenson, G. J. Michaelson, and Y. L. Shur, “Permafrost soils and carbon cycling,” Soil 1, 147–171 (2015).

    Article  Google Scholar 

  34. H. Polita and T. Sarjala, “Seasonal fluctuation in microbial biomass and activity along a natural nitrogen gradient in a drained peatland,” Soil Biol. Biochem. 36, 1047–1055 (2004).

    Article  Google Scholar 

  35. J. Pumpanen, P. Kolari, H. Ilvesniemi, et al., “Comparison of different chamber techniques for measuring soil CO2 efflux,” Agric. For. Meteorol. 123, 159–176 (2004).

    Article  Google Scholar 

  36. J. W. Raich and C. S. Potter, “Global patterns of carbon dioxide emissions from soils,” Global Biogeochem. Cycles 9, 23–36 (1995).

    Article  Google Scholar 

  37. D. A. Riveros-Iregui, B. L. McGlynn, H. E. Epstein, and D. L. Welsch, “Interpretation and evaluation of combined measurement techniques for soil CO2 efflux: discrete surface chambers and continuous soil CO2 concentration probes,” J. Geophys. Res.: Biogeosci. 113, G04027 (2008).

    Article  Google Scholar 

  38. A. Rodionov, H. Flessa, M. Grabe, O. A. Kazansky, O. Shibistova, and G. Guggenberger, “Organic carbon and total nitrogen variability in permafrost-affected soils in a forest tundra ecotone,” Eur. J. Soil Sci. 58, 1260–1272 (2007).

    Article  Google Scholar 

  39. X. Song, G. Wang, Z. Hu, F. Ran, and X. Chen, “Boreal forest soil CO2 and CH4 fluxes following fire and their responses to experimental warming and drying,” Sci. Total Environ. 664, 862–872 (2018).

    Article  Google Scholar 

  40. G. P. Sparling, C. W. Feltham, J. Reynolds, W. West, and P. Singleton, “Estimation of soil microbial c by a fumigation-extraction method: use on soils of high organic matter content, and a reassessment of the k ec-factor,” Soil Biol. Biochem. 22 (3), 301–307 (1990).

    Article  Google Scholar 

  41. C. Tarnocai, et al., “Soil organic carbon pools in the northern circumpolar permafrost region,” Global Biogeochem. Cycles 23 (2), GB2023 (2009).

    Article  Google Scholar 

  42. E. D. Vance, P. C. Brookes, and D. S. Jenkinson, “An extraction method for measuring soil microbial biomass C,” Soil Biol. Biochem. 19, 703–707 (1987).

    Article  Google Scholar 

  43. G. X. Wang, J. Qian, G. D. Cheng, and Y. M. Lai, “Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication,” Sci. Total Environ. 291 (1–3), 207–217 (2002).

    Article  Google Scholar 

  44. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (UN Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  45. M. Xu and Y. Qi, “Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California,” Global Change Biol. 7, 667–677 (2001).

    Article  Google Scholar 

Download references

Funding

The study was performed within the framework of state assignment no. 116020950097-4. Field and laboratory works were supported by the grant of the President of the Russian Federation (project no. MK-1181.2018.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bobrik.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by D. Konyushkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobrik, A.A., Goncharova, O.Y., Matyshak, G.V. et al. Spatial Distribution of the Components of Carbon Cycle in Soils of Forest Ecosystems of the Northern, Middle, and Southern Taiga of Western Siberia. Eurasian Soil Sc. 53, 1549–1560 (2020). https://doi.org/10.1134/S1064229320110058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320110058

Keywords:

Navigation