Skip to main content
Log in

Accumulation of Polyarenes in Plants of Peatlands on the Coast of the Barents Sea

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The accumulation of polycyclic aromatic hydrocarbons (PAHs) in the plants of tundra peatlands on the coast of the Barents Sea (Nenets autonomous okrug) has been studied. Two- and three-ringed polyarenes are prevalent in the plants on the coast of the Barents Sea with their share in the total PAH content varying from 81 to 97%. The highest total content of polyarenes is observed in Sphagnum lindbergii Shimp., Carex aquatilis Wahlenb., and Eriophorum russeolum Fr. The plants growing in tundra and forest-tundra have identical qualitative and quantitative PAH compositions allowing for extrapolation of our data to other peatlands in the reference areas. A tight correlation between the PAH compositions of the upper peat layers and the dominant plants in the botanical composition of peat is observed. The correlation coefficients decrease with depth, which is associated with the increasing degree of peat decomposition. No accumulation peaks of heavy PAHs are observed in the active and permafrost layers of the peat in the waterlogged hollows and peat mounds of the northern tundra peatlands, which determines a decrease in the total mass fraction of polyarenes in these peatlands by an order of magnitude in comparison with the forest-tundra peatlands. Presumably, this is related to a slowed down decomposition of lignin under tundra conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. R. S. Vasilevich and V. A. Beznosikov, “Effect of climate changes in the Holocene on the distribution of humic substances in the profile of forest-tundra peat mounds,” Eurasian Soil Sci. 50, 1271–1282 (2017).

    Article  Google Scholar 

  2. D. N. Gabov and V. A. Beznosikov, “Polycyclic aromatic hydrocarbons in tundra soils of the Komi Republic,” Eurasian Soil Sci. 47, 18–25 (2014).

    Article  Google Scholar 

  3. D. N. Gabov, V. A. Beznosikov, B. M. Kondratenok, and E. V. Yakovleva, “Formation of polycyclic aromatic hydrocarbons in northern and middle taiga soils,” Eurasian Soil Sci. 41, 1180–1188 (2008).

    Article  Google Scholar 

  4. D. N. Gabov, R. S. Vasilevich, E. V. Yakovleva, and O. M. Zueva, “Aromatic compounds in peatlands of permafrost area,” Geoekol. Inzh. Geol. Gidrogeol. Geokriol., No. 6, 15–29 (2017).

  5. E. A. Golovatskaya and L. G. Nikonova, “Decomposition of the plant remains in peat soils of oligotrophic mires,” Vestn. Tomsk. Gos. Univ., Biol., No. 3 (23), 137–151 (2013). https://doi.org/10.17223/19988591/23/13

  6. A. P. Zhidkin, A. N. Gennadiev, and T. S. Koshovskii, “Input and behavior of polycyclic aromatic hydrocarbons in arable, fallow, and forest soils of the taiga zone (Tver oblast),” Eurasian Soil Sci. 50, 296–304 (2017).

    Article  Google Scholar 

  7. T. I. Isachenko and E. M. Lavrenko, “Botanical-geographic zonation,” in Vegetation of European Part of USSR (Nauka, Leningrad, 1980), pp. 10–23.

    Google Scholar 

  8. D. A. Kaverin, A. V. Pastukhov, E. M. Lapteva, C. Biasi, M. Marushchak, and P. Martikainen, “Morphology and properties of the soils of permafrost peatlands in the southeast of the Bol’shezemel’skaya tundra,” Eurasian Soil Sci. 49, 498–511 (2016).

    Article  Google Scholar 

  9. N. E. Koroleva and E. E. Kulyugina, “The history of botanical studies and analysis of vegetation in the European subarctic,” in Proceedings of the XI Perfil’ev’s Scientific Conference “Biodiversity, Protection, and Rational Use of Vegetation Resources of the North,” Arkhangelsk, May 23–25, 2007 (Arkhangelsk, 2007), Part 1, pp. 70–75.

  10. L. G. Nikonova, I. N. Kurganova, V. O. Lopes de Gerenyu, V. A. Zhmurin, and E. A. Golovatskaya, “Effect of abiotic factors on decomposition of litter from the peat-forming plants in experimental conditions,” Vestn. Tomsk. Gos. Univ., Biol., No. 46, 148–170 (2019). https://doi.org/10.17223/19988591/46/8

  11. D. S. Orlov, Humic Acids of Soils and General Theory of Humification (Moscow State Univ., Moscow, 1990) [in Russian].

    Google Scholar 

  12. A. V. Pastukhov, D. A. Kaverin, and D. N. Gabov, “Polycyclic aromatic hydrocarbons in cryogenic peat plateaus of northeastern Europe,” Eurasian Soil Sci. 50, 805–813 (2017).

    Article  Google Scholar 

  13. E. P. Feofilova and I. S. Mysyakina, “Lignin: chemical structure, biodegradation, and practical application (a review),” Appl. Biochem. Microbiol. 52, 573–581 (2016).

    Article  Google Scholar 

  14. E. V. Yakovleva, D. N. Gabov, V. A. Beznosikov, and B. M. Kondratenok, “Accumulation of polycyclic aromatic hydrocarbons in soils and mosses of southern tundra at different distances from the thermal power plant,” Eurasian Soil Sci. 51, 528–535 (2018).

    Article  Google Scholar 

  15. E. V. Yakovleva, D. N. Gabov, R. S. Vasilevich, and N. N. Goncharova, “Participation of plants in the formation of polycyclic aromatic hydrocarbons in peatlands,” Eurasian Soil Sci. 53, 317–329 (2020).

    Article  Google Scholar 

  16. A. Asemaninejad, R. Greg Thorn, B. A. Branfireun, and Z. Lindo, “Climate change favors specific fungal communities in boreal peatlands,” Soil, Biol. Biochem. 120, 28–36 (2018). https://doi.org/10.1016/j.soilbio.2018.01.029

    Article  Google Scholar 

  17. S. Bozkurt, M. Lucisano, L. Moreno, and I. Neretnieks, “Peat as a potential analogue for the long-term evolution in landfills,” Earth-Sci. Rev. 53 (1–2), 95–147 (2001). https://doi.org/10.1016/S0012-8252(00)00036-2

    Article  Google Scholar 

  18. L. O. Brien, P. H. Langlois, C. C. Lawson, et al., “Maternal occupational exposure to polycyclic aromatic hydrocarbons and craniosynostosis among offspring in the national birth defects prevention study,” Birth Defects Res., Part A 106 (1), 55–60 (2016). https://doi.org/10.1002/bdra.23389

    Article  Google Scholar 

  19. Y. Cheng, S. Kong, Q. Yan, H. Liu, W. Wang, K. Chen, Y. Yin, H. Zheng, J. Wu, L. Yao, X. Zeng, S. Zheng, F. Wu, Z. Niu, Y. Zhang, Y. Yan, M. Zheng, and S. Qi, “Size-segregated emission factors and health risks of PAHs from residential coal flaming/smoldering combustion,” Environ. Sci. Pollut. Res. Int. 26 (31), 31793–31803 (2019). https://doi.org/10.1007/s11356-019-06340-2

    Article  Google Scholar 

  20. W. Chen, H. Wang, Q. Gao, Y. Chen, S. Li, Y. Yang, D. Werner, S. Tao, and X. Wang, “Association of 16 priority polycyclic aromatic hydrocarbons with humic acid and humin fractions in a peat soil and implications for their long-term retention,” Environ. Pollut. 230, 882–890 (2017). https://doi.org/10.1016/j.envpol.2017.07.038

    Article  Google Scholar 

  21. J. B. Herbstman, D. Tang, D. Zhu, L. Qu, A. Sjodin, Z. Li, D. Camann, and F. P. Perera, “Prenatal exposure to polycyclic aromatic hydrocarbons, benzo[a]pyrene-DNA adducts, and genomic DNA methylation in cord blood,” Environ. Health Perspect. 120 (5), 733–738 (2012). https://doi.org/10.1289/ehp.1104056

    Article  Google Scholar 

  22. M. Malawska and A. Ekonomiuk, “The use of wetlands for the monitoring of non-point source air pollution,” Pol. J. Environ. Stud. 17 (1), 57–70 (2008).

    Google Scholar 

  23. A. Ren, “Environmental pollutants and neural tube defects,” in Reproductive and Developmental Toxicology, 2nd ed. (Elsevier, Amsterdam, 2017), Vol. 61, pp. 1139–1166.

    Google Scholar 

  24. S. Thuens, C. Blodau, and M. Radke, “How suitable are peat cores to study historical deposition of PAHs,” Sci. Total Environ. 450–451, 271–279 (2013). https://doi.org/10.1016/j.scitotenv.2013.01.091

    Article  Google Scholar 

  25. K. K. Treseder, Y. Marusenko, A. L. Romero-Olivares, and M. R. Maltz, “Experimental warming alters potential function of the fungal community in boreal forest,” Global Change Biol. 22 (10), 3395–3404 (2016). https://doi.org/10.1111/gcb.13238

    Article  Google Scholar 

  26. A. Ukalska-Jaruga, B. Smreczak, and A. Klimkowicz-Pawlas, “Soil organic matter composition as a factor affecting the accumulation of polycyclic aromatic hydrocarbons,” J. Soils Sediments 19 (4), 1890–1900 (2019). https://doi.org/10.1007/s11368-018-2214-x

    Article  Google Scholar 

  27. Z. Wang, S. Liu, Z.-J. Bu, and S. Wang, “Degradation of polycyclic aromatic hydrocarbons (PAHs) during Sphagnum litters decay,” Environ. Sci. Pollut. Res. 25, 18642–18650 (2018). https://doi.org/10.1007/s11356-018-2019-x

    Article  Google Scholar 

  28. Z. Wang, H. Li, and S. Liu, “Different distribution of polycyclic aromatic hydrocarbons (PAHs) between Sphagnum and Ledum peat from an ombrotrophic bog in Northeast China,” J. Soils Sediments 19, 1735–1744 (2019). https://doi.org/10.1007/s11368-018-2178-x

    Article  Google Scholar 

  29. W. Wilcke, “Polycyclic aromatic hydrocarbons (PAHs) in soil—a review,” J. Plant Nutr. Soil Sci. 163, 229–248 (2000). https://doi.org/10.1002/1522-2624(200006)163:3<229::AID-JPLN229>3.0.CO;2-6

    Article  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 18-05-60195 (TsITiS no. AAAA-A18-118062090029-0) and by the state budget (no. AAAA-A17-117122290011-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Yakovleva.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovleva, E.V., Gabov, D.N. & Panyukov, A.N. Accumulation of Polyarenes in Plants of Peatlands on the Coast of the Barents Sea. Eurasian Soil Sc. 53, 1538–1548 (2020). https://doi.org/10.1134/S1064229320110137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320110137

Keywords:

Navigation