Skip to main content
Log in

The Ways to Develop Soil Textural Classification for Laser Diffraction Method

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The existing classifications of soil texture are based on the sedimentation data. The aim of this article is to consider the ways to develop soil textural classification on the basis of particle-size distribution (PSD) data obtained by the laser diffraction method. A detailed comparison of PSD data obtained by the classical pipette method and the method of laser diffractometry has been performed. We have shown the reproducibility of the laser diffraction method and the effect of the oxidation stage on the soil texture class. This study is based on eight genetic soil types (overall, 32 full-profile soil pits) forming a zonal soil sequence from Podzols (Subpolar Urals) to ferrallitic soil (southwest Oceania) and differing in their mineralogical compositions, textures, and elementary pedogenetic processes. The direct use of the Kachinskii and USDA classifications with the data of the laser diffraction method leads to mistakes in determining the soil texture class in 43 and 65% of cases, respectively. The increasing complexity of recalculation, introduction of new variables, and accounting for interlaboratory errors allow us to determine correctly the texture class according to the Kachinskii and USDA classifications in no more than 70 and 72% of soil samples, respectively. The most simple and effective approach to solve the classification problem for the laser diffraction method is to calibrate existing classifications directly on the basis of data on soil samples, for which the texture class was determined by the field method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. N. I. Gorbunov, “Soil preparation for mineralogical analysis,” in Methods of Mineralogical and Micromorphological Analysis of Soils (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  2. V. V. Egorov, E. N. Ivanova, and V. M. Fridland, Classification and Diagnostics of Soils of the USSR (Kolos, Moscow, 1977) [in Russian].

    Google Scholar 

  3. Unified State Register of Soil Resources of Russia, Version 1.0, Ed. by A. L. Ivanov and S. A. Shoba (Grif i K, Moscow, 2014) [in Russian].

    Google Scholar 

  4. N. A. Kachinskii, Mechanical and Microaggregate Composition of Soils: Study Methods (Academy of Sciences of USSR, Moscow, 1958) [in Russian].

    Google Scholar 

  5. Methods of the State Cadastral Evaluation of Agricultural Lands in Subjects of the Russian Federation (Russian State Committee on Land Resources and Land Management, Moscow, 2000) [in Russian].

  6. Methods of Multiple Monitoring of Fertility of Agricultural Soils (Russian Research Institute of Information and Technical and Economic Research on the Engineering and Technical Support of the Agroindustrial Complex, Moscow, 2003) [in Russian].

  7. Theory and Methods of Soil Physics, Ed. by E. V. Shein and L. O. Karpachevskii (Grif i K, Moscow, 2007) [in Russian].

    Google Scholar 

  8. E. V. Shein, E. Yu. Milanovskiy, and A. Z. Molov, “Particle-size distribution: role of organic matter in the differences between the data of sedimentometry and laser diffractometry methods,” Dokl. Ekol. Pochvoved. 1 (1), 17–30 (2006).

    Google Scholar 

  9. A. A. Shinkarev, A. G. Kornilova, F. A. Trofimova, A. S. Gordeev, K. G. Giniyatullin, and T. Z. Lygina, “Comparison of sedimentometry and laser diffractometry methods in the analysis of the particle-size distribution of the clayey fraction of soils,” Uch. Zap. Kazan. Univ., Ser. Estestv. Nauki 2 (152), (2010).

  10. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  11. A. V. Yudina and E. Yu. Milanovskiy, “Microaggregate analysis of soils by laser diffractometry: specific sample preparation and interpretation of results,” Byull. Pochv. Inst. im. V.V. Dokuchaeva, No. 89, 3–20 (2017). https://doi.org/10.19047/0136-1694-89

    Article  Google Scholar 

  12. A. V. Yudina, D. S. Fomin, A. D. Kotelnikova, and E. Yu. Milanovskii, “From the notion of elementary soil particle to the particle-size and microaggregate-size distribution analyses: a review,” Eurasian Soil Sci. 51, 1326–1347 (2018). https://doi.org/10.1134/S1064229318110091

    Article  Google Scholar 

  13. L. Beuselinck, G. Govers, J. Poesen, G. Degraer, and L. Froyen, “Grain-size analysis by laser diffractometry: comparison with the sieve-pipette method,” Catena 32, 193–208 (1998). https://doi.org/10.1016/S0341-8162(98)00051-4

    Article  Google Scholar 

  14. A. Bieganowski, M. Ryżak, A. Sochan, G. Barna, H. Hernádi, M. Beczek, C. Polakowski, and A. Makó, “Laser diffractometry in the measurements of soil and sediment particle size distribution,” Adv. Agron. 151, 215–279 (2018). https://doi.org/10.1016/bs.agron.2018.04.003

    Article  Google Scholar 

  15. P. Buurman, T. Pape, and C. C. Muggler, “Laser grain-size determination in soil genetic studies 1. Practical problems,” Soil Sci. 162, 211–218 (1997). https://doi.org/10.1097/00010694-199703000-00007

    Article  Google Scholar 

  16. I. Callesen, H. Keck, and T. J. Andersen, “Particle size distribution in soils and marine sediments by laser diffraction using Malvern Mastersizer 2000—method uncertainty including the effect of hydrogen peroxide pretreatment,” J. Soils Sediments 18 (7), 2500–2510 (2018). https://doi.org/10.1007/s11368-018-1965-8

    Article  Google Scholar 

  17. J. R. Campbell, “Limitations in the laser particle sizing of soils,” in Advances in Regolith (Canberra, 2003), Vol. 1, pp. 38–42.

  18. L. R. Cooper, R. Haverland, D. Hendricks, and V. Knisei, “Microtrac particle-size analyzer: an alternative particle-size determination method for sediment and soils,” Soil Sci. 138, 138–146 (1984).

    Article  Google Scholar 

  19. G. Eshel, G. J. Levy, U. Mingelgrin, and M. J. Singer, “Critical evaluation of the use of laser diffraction for particle-size distribution analysis,” Soil Sci. Soc. Am. J. 68, 736–743 (2004). https://doi.org/10.2136/sssaj2004.7360

    Article  Google Scholar 

  20. G. Eshel, D. N. Warrington, and G. J. Levy, “Comments on “Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples” by Kowalenko and Babuin (Geoderma 2013; 193–194: 22–28),” Geoderma 226, 418–419 (2014). https://doi.org/10.1016/j.geoderma.2014.02.024

    Article  Google Scholar 

  21. S. Hayton, C. S. Nelson, B. D. Ricketts, S. Cooke, and M. W. Wedd, “Effect of mica on particle-size analyses using the laser diffraction technique,” J. Sediment. Res. 71, 507–509 (2001). https://doi.org/10.1306/2DC4095B-0E47-11D7-8643-000102C1865D

    Article  Google Scholar 

  22. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization, Rome, 2015).

    Google Scholar 

  23. J. L. Jensen, P. Schjønning, C. W. Watts, B. T. Christensen, and L. J. Munkholm, “Soil texture analysis revisited: removal of organic matter matters more than ever,” PloS One 12 (5), e0178039 (2017). https://doi.org/10.1371/journal.pone.0178039

    Article  Google Scholar 

  24. R. Kerry, B. G. Rawlins, M. A. Oliver, and A. M. Lacinska, “Problems with determining the particle size distribution of chalk soil and some of their implications,” Geoderma 152, 324–337 (2009). https://doi.org/10.1016/j.geoderma.2009.06.018

    Article  Google Scholar 

  25. M. Konert and J. E. F. Vandenberghe, “Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction,” Sedimentology 44, 523–535 (1997). https://doi.org/10.1046/j.1365-3091.1997.d01-38.x

    Article  Google Scholar 

  26. K. Kosugi, “Lognormal distribution model for unsaturated soil hydraulic properties,” Water Resour. Res. 32, 2697–2703 (1996). https://doi.org/10.1029/96WR01776

    Article  Google Scholar 

  27. C. G. Kowalenko and D. Babuin, “Inherent factors limiting the use of laser diffraction for determining particle size distributions of soil and related samples,” Geoderma 193, 22–28 (2013). https://doi.org/10.1016/j.geoderma.2012.09.006

    Article  Google Scholar 

  28. J. L. Loizeau, D. Arbouille, S. Santiago, and J. P. Vernet, “Evaluation of wide range laser diffraction grain size analyzer for use with sediments,” Sedimentology 41, 353–361 (1994). https://doi.org/10.1111/j.1365-3091.1994.tb01410.x

    Article  Google Scholar 

  29. A. Makó, G. Tóth, M. Weynants, K. Rajkai, T. Hermann, and B. Tóth, “Pedotransfer functions for converting laser diffraction particle-size data to conventional values,” Eur. J. Sci. 68, 769–782 (2017). https://doi.org/10.1111/ejss.12456

    Article  Google Scholar 

  30. M. D. Matthews, “The effect of pretreatment on size analysis,” in Principles, Methods and Application of Particle Size Analysis (Cambridge University Press, Cambridge, 2007). ISBN 0-521-36472-8

    Google Scholar 

  31. B. A. Miller and R. J. Schaetzl, “Precision of soil particle size analysis using laser diffractometry,” Soil Sci. Soc. Am. J. 76, 1719–1727 (2012). https://doi.org/10.2136/sssaj2011.0303

    Article  Google Scholar 

  32. P. F. North, “Towards an absolute measurement of soil structural stability using ultrasound,” J. Soil Sci. 27, 451–459 (1976). https://doi.org/10.1111/j.1365-2389.1976.tb02014.x

    Article  Google Scholar 

  33. W. Pabst, K. Kuneš, J. Havrda, and E. Gregorová, “A note on particle size analyses of kaolins and clays,” J. Eur. Ceram. Soc. 20, 1429–1437 (2000). https://doi.org/10.1016/S0955-2219(00)00016-9

    Article  Google Scholar 

  34. C. Polakowski, M. Ryżak, A. Bieganowski, A. Sochan, P. Bartmiński, R. Dębicki, and W. Stelmach, “The reasons for incorrect measurements of the mass fraction ratios of fine and coarse material by laser diffraction,” Soil Sci. Soc. Am. J. 79, 30–36 (2015).

    Article  Google Scholar 

  35. M. W. I. Schmidt, C. Rumpel, and I. Kögel-Knabner, “Evaluation of an ultrasonic dispersion procedure to isolate primary organomineral complexes from soils,” Eur. J. Soil Sci. 50, 87–94 (1999). https://doi.org/10.1046/j.1365-2389.1999.00211.x

    Article  Google Scholar 

  36. Soil Survey Staff, Keys to Soil Taxonomy, 12th ed. (USDA Natural Resources Conservation Service, Washington, DC, 2014).

    Google Scholar 

  37. A. Sochan, A. Bieganowski, P. Bartmiński, M. Ryżak, M. Brzezińska, R. Dębicki, T. Stuczyński, and C. Polakowski, “Use of the laser diffraction method for assessment of the pipette method,” Soil Sci. Soc. Am. J. 79, 37–42 (2015).

    Article  Google Scholar 

  38. H. Taubner, B. Roth, and R. Tippkötter, “Determination of soil texture: comparison of the sedimentation method and the laser-diffraction analysis,” J. Plant Nutr. Soil Sci. 172, 161–171 (2009). https://doi.org/10.1002/jpln.200800085

    Article  Google Scholar 

  39. B. Vandecasteele and B. De Vos, Relationship between Soil Textural Fractions Determined by the Sieve-Pipette Method and Laser Diffractometry (Instituut voor Bosbouw en Wildbeheer, Brussels, 2001).

    Google Scholar 

  40. J. Vandenberghe, “Grain size of fine-grained windblown sediment: a powerful proxy for process identification,” Earth-Sci. Rev. 121, 18–30 (2013). https://doi.org/10.1016/j.earscirev.2013.03.001

    Article  Google Scholar 

  41. W. Wang, J. Liu, B. Zhao, J. Zhang, X. Li, and Y. Yan, “Critical evaluation of particle size distribution models using soil data obtained with a laser diffraction method,” PLoS One 10, e0125048 (2015). https://doi.org/10.1371/journal.pone.0125048

    Article  Google Scholar 

  42. X. Yang, Q. Zhang, X. Li, X. Jia, X. Wei, and M. A. Shao, “Determination of soil texture by laser diffraction method,” Soil Sci. Soc. Am. J. 79, 1556–1566 (2015). https://doi.org/10.2136/sssaj2015.04.0164

    Article  Google Scholar 

  43. Y. Yang, L. Wang, O. Wendroth, B. Liu, C. Cheng, T. Huang, and Y. Shi, “Is the laser diffraction method reliable for soil particle size distribution analysis?” Soil Sci. Soc. Am. J. 83, 276–287 (2019). https://doi.org/10.2136/sssaj2018.07.0252

    Article  Google Scholar 

  44. T. M. Zobeck, “Rapid soil particle size analyses using laser diffraction,” Appl. Eng. Agric. 20 (5), 633–639 (2004). https://doi.org/10.13031/2013.17466

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to D.V. Dubovik, A.Yu. Aidiev, and V.M. Lazarev for the opportunity to work on the territory of the Kursk Federal Agrarian Center and the Kursk Research Institute of Agricultural Production; to A.A. Vlasov and O.V. Ryzhkov for the opportunity to work on the territory of the V.V. Alekhin Central Chernozemic State Reserve; to A.F. Stulin for the opportunity to work on the territory of the Voronezh Department of the All-Russia Research Institute of Corn. The authors are especially grateful to Dr. Nikolay Khitrov for valuable comments and advice on improving the paper.

Funding

This study supported by the Russian Foundation for Basic Research, project nos. 18-34-00825 and 18-316-00139. It was performed using the equipment of the Collective Use Center “Functions and Properties of Soils and Soil Cover” of the Dokuchaev Soil Science Institute (laser diffractometer Microtrac Bluewave) and the Skolkovo Institute of Science and Technology (the pipetting apparatus Eijkelkamp, Netherlands, and vortex Reax Top Heidolph, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yudina.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Klyueva

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yudina, A.V., Fomin, D.S., Valdes-Korovkin, I.A. et al. The Ways to Develop Soil Textural Classification for Laser Diffraction Method. Eurasian Soil Sc. 53, 1579–1595 (2020). https://doi.org/10.1134/S1064229320110149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320110149

Keywords:

Navigation