Skip to main content
Log in

Who is to blame for the increasing prevalence of dietary sensitivity to wheat?

  • Review
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

This paper provides an overview of the related scientific literature, with some of our own targeted research, to investigate the possible causes of the recently increased prevalence of various forms of dietary cereal sensitivities. Detailed scientific investigations do not support the controversial idea that human practices, particularly modern wheat breeding, may have contributed to the increase in celiac disease (CD) prevalence during the latter half of the twentieth century. Each of the primitive wheat relatives and each historic or modern bread and durum wheat variety contains more or less amounts of toxic/allergenic epitopes. In the last 120 years, health-related quality attributes have not been considered in pre-breeding or breeding, but the yield- and functional quality-oriented selection procedures have resulted in unintended spinoff effects on the amounts of harmful compounds in new lines. Because of the trend of decreases in overall protein content, as well as the alteration of the glutenin-to-gliadin content to improve dough strength, older varieties are higher in gliadin content with consequent higher CD antigenicity. Meanwhile practices, introduced during the last 50 years in utilizing wheat in the food industry, have significantly increased the consumption of untreated prolamin proteins, including gluten proteins. Other factors for consideration are the incorporation of vital gluten as a cheap protein supplement in some food products and the reduction of fermentation time during bread making. Beyond the obvious effects of improved and more widely used diagnostic tests in medical practice, the increased incorporation of untreated gluten proteins and residual FODMAPs might be major reasons for the increasing prevalence of wheat sensitivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

CD:

Coliac disease

NCGS:

Non-coliac gluten sensitivity

NCWS:

Non-coliac wheat sensitivity

IBS:

Irritable bowel syndrome

HMW GS:

High molecular weight glutenin subunits

LMW GS:

Low molecular weight glutenin subunits

ATIs:

Amylase-tripsin inhibitors

FODMAP:

Fermentable oligo-, di-, mono-saccharides and polyols

GFD:

Gluten-free diet

LAB:

Lactic acid bacteria

NTD:

No-time dough procedure

LC–MS:

Liquid chromatography–mass spectrometry

References

  • Altenbach SB, Vensel WH, Dupont FM (2011) The spectrum of low molecular weight alpha-amylase/protease inhibitor genes expressed in the US bread wheat cultivar Butte 86. BMC Res Notes 4:242

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Toma A, Volta U, Auricchio R, Castillejo G, Sanders D, Cellier C, Mulder CJ, Lundin KAE (2019) European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United Eur Gastroenterol J 7:583–613

    Google Scholar 

  • Andersson R, Fransson G, Tietjen M, Åman P (2009) Content and molecular-weight distribution of dietary fiber components in whole-grain rye flour and bread. J Agric Food Chem 57:2004–2008

    CAS  PubMed  Google Scholar 

  • Appels R (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. In: International wheat genome sequencing consortium, Science 361, eaar7191

  • Arendt EK, Dal Bello F (2008) Gluten-free cereal products and beverages. Academic Press, San Diego

    Google Scholar 

  • Armentia A, Martín S, Diaz-Perales A, Palacín A, Tordesillas L, Herrero M, Martín-Armentia M (2012) A possible hypoallergenic cereal in wheat food allergy and Baker’s asthma. Am J Plant Sci 3:1779–1781

    CAS  Google Scholar 

  • Atchison J, Head L, Gates A (2010) Wheat as food, wheat as industrial substance; comparative geographies of transformation and mobility. Geoforum 41:236–246

    Google Scholar 

  • Auricchio S, De Ritis G, De Vincenzi M, Occorsio P, Silano V (1982) Effects of gliadin-derived peptides from bread and durum wheats on small intestine cultures from rat fetus and coeliac children. Pediatr Res 16:1004–1010

    CAS  PubMed  Google Scholar 

  • Balakireva A, Zamyatnin AA (2016) Properties of gluten intolerance: gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 8:644

    PubMed Central  Google Scholar 

  • Battais F, Courcoux P, Popineau Y, Kanny G, Moneret-Vautrin DA, Denery-Papini S (2005a) Food allergy to wheat: differences in immunoglobulin E-binding proteins as a function of age or symptoms. J Cereal Sci 42:109–117

    CAS  Google Scholar 

  • Battais F, Mothes T, Moneret-Vautrin DA, Pineau F, Kanny G, Popineau Y, Bodinier M, Denery-Papini S (2005b) Identification of IgE-binding epitopes on gliadins for patients with food allergy to wheat. Allergy 60:815–821

    CAS  PubMed  Google Scholar 

  • Battais F, Richard C, Jacquenet S, Denery-Papini S, Moneret-Vautrin DA (2008) Wheat grain allergies: an update on wheat allergens. Eur Ann Allergy Clin Immunol 40:67–76

    CAS  PubMed  Google Scholar 

  • Baur X, Sander I, Posch A, Raulf-Heimsoth M (1998) Baker’s asthma due to the enzyme xylanase—a new occupational allergen. Clin Exp Allergy 28:1591–1593

    CAS  PubMed  Google Scholar 

  • Békés F, Schoenlechner R, Tömösközi S (2016) Ancient wheats and pseudocereals for possible use in cereal-grain dietary intolerances. In: Wrigley CW, Batey I, Miskelly D (eds) Cereal grains assessing and managing quality, 2nd edn. Elsevier, Amsterdam, pp 353–389

    Google Scholar 

  • Békés F, Ács K, Gell G, Lantos C, Kovács AM, Birinyi Z, Pauk J (2017) Towards breeding less allergenic spelt wheat with low FODMAP content. Acta Aliment 46:246–258

    Google Scholar 

  • Benítez V, Esteban RM, Moniz E, Casado N, Aguilera Y, Mollá E (2018) Breads fortified with wholegrain cereals and seeds as source of antioxidant dietary fibre and other bioactive com-pounds. J Cereal Sci 82:113–120

    Google Scholar 

  • Biesiekierski JR, Rosella O, Rose R, Liels K, Barrett JS, Shepherd SJ, Gibson PR, Muir JG (2011) Quantification of fructans galacto-oligosaccharides and other short-chain carbohydrates in processed grains and cereals. J Hum Nutr Diet 24:154–176

    CAS  PubMed  Google Scholar 

  • Biesiekierski JR, Peters SL, Newnham ED, Rosella O, Muir JG, Gibson PR (2013) No effects of gluten in patients with self-reported non-celiac gluten sensitivity after dietary reduction of fermentable, poorly absorbed, short-chain carbohydrates. Gastroenterology 145:320–328

    CAS  PubMed  Google Scholar 

  • Bose U, Juhász A, Broadbent JA, Byrne K, Howitt CA, Colgrave ML (2020) Identification and quantitation of amylase trypsin inhibitors across cultivars representing the diversity of bread wheat. J Proteome Res 19:2136–2148

    CAS  PubMed  Google Scholar 

  • Boukid F, Mejri M, Pellegrini N, Sforza S, Prandi B (2017) How looking for celiac-safe wheat can influence its technological properties. Compr Rev Food Sci Food Saf 16:797–807

    CAS  PubMed  Google Scholar 

  • Braly J, Hogganm R (2002) Dangerous grains: Why gluten cereal grains may be hazardous to your health. Penguin Group, New York

    Google Scholar 

  • Branchi F, Ferretti F, Norsa L, Roncoroni L, Conte D, Bardella MT, Elli L (2015) Management of nonceliac gluten sensitivity by gastroenterology specialists: data from an Italian survey. Biomed Res Int. https://doi.org/10.1155/2015/530136

    Article  PubMed  PubMed Central  Google Scholar 

  • Brandolini A, Hidalgo A, Plizzari L, Erba D (2011) Impact of genetic and environmental factors on einkorn wheat (Triticum monococcum L. subsp. monococcum) polysaccharides. J Cereal Sci 53:65–72

    CAS  Google Scholar 

  • Brighenti F, Casiraghi MC, Pellegrini N, Riso P, Simonetti P, Testolin G (1995) Comparison of lactulose and inulin as reference standard for the study of resistant starch fermentation using hydrogen breath test. Ital J Gastroenterol 27:122–128

    CAS  PubMed  Google Scholar 

  • Brouns F, van Rooy G, Shewry PR, Rustgi S, Jonkers D (2019) Adverse reactions to wheat or wheat components. Compr Rev Food Sci Food Saf 18:1437–1452

    PubMed  Google Scholar 

  • Caio G, Volta U, Sapone A, Leffler DA, De Giorgio R, Catassi C, Fasano A (2019) Celiac disease: a comprehensive current review. BMC Med 17:142

    PubMed  PubMed Central  Google Scholar 

  • Capocchi A, Muccilli V, Cunsolo V, Saletti R, Foti S, Fontanini D (2013) A heterotetrameric alpha-amylase inhibitor from emmer (Triticum dicoccon Schrank) seeds. Phytochemistry 88:6–14

    CAS  PubMed  Google Scholar 

  • Capriles VD, Areas JAG (2014) Novel approaches in gluten-free breadmaking: interface between food science, nutrition, and health. Compr Rev Food Sci Food Saf 13:871–890

    CAS  Google Scholar 

  • Caputo I, Lepretti M, Martucciello S, Esposito C (2010) Enzymatic strategies to detoxify gluten: implications for CD. Enzyme Res 2010:174354

  • Carroccio A, Di Prima L, Noto D, Fayer F, Ambroiano G, Villanacci V, Cammers K, Lafiandra D, De Ambrogio E, Di Fede G, Iacono G, Pogna N (2011) Searching for wheat plants with low toxicity in celiac disease: between direct toxicity and immunologic activation. Dig Liver Dis Off J Ital Soc Gastroenterol Ital Assoc Study Liver 43:34–39

    Google Scholar 

  • Caruso R, Pallone F, Stasi E, Romeo S, Monteleone G (2013) Appropriate nutrient supplementation in celiac disease. Ann Med 45:522–531

    CAS  PubMed  Google Scholar 

  • Castillo NE, Theethira TG, Leffler DA (2015) The present and the future in the diagnosis and management of celiac disease. Gastroenterol Rep (Oxf) 3:3–11

    Google Scholar 

  • Catassi C, Fasano A (2018) From ptolemaus to copernicus: the evolving system of gluten-related disorder. Preface. Nutrients special issues (ISSN 2072-6643) vii

  • Catassi C, Bai JC, Bonaz B, Bouma G, Calabrò A, Carroccio A, Castillejo G, Ciacci C, Cristofori F, Dolinsek J (2014) Non-celiac gluten sensitivity: the new frontier of gluten related disorders. Nutrients 5:3839–3853

    Google Scholar 

  • Cauvain SP, Young LS (2006) A brief history of the chorleywood bread process. In: Chapter 2. the chorleywood bread process, p 6–16. CRC Press, Washington, DC, USA, Woodhead Publishing Limited, Cambridge, England

  • Cavanagh C, Morell M, Macka I, Powell W (2008) From mutations to MAGIC: resources for gene discovery validation and delivery in crop plants. Curr Opin Plant Biol 11:215–221

    PubMed  Google Scholar 

  • Chanberlain N, Collins TH, Eltonm GAH (1961) The Chorleywood bread process. BIRS Report 59. Chorleywood, Herts, pp 1–30

  • Cho K, Beom H-R, Jang Y-R, Altenbach SB, Vensel WH, Simon-Buss A, Lim S-H, Kim MG, Lee J-Y (2018) Proteomic profiling and epitope analysis of the complex α-, γ -, and ω-Gliadin Families In A Commercial Bread Wheat. Front Plant Sci 9:818

    PubMed  PubMed Central  Google Scholar 

  • Colomba MS, Gregorini A (2012) Are ancient durum wheats less toxic to celiac patients? A study of alpha-gliadin from Graziellara and Kamut. Sci World J 8:837416

    Google Scholar 

  • Comino I, Moreno M, Real A, Rodríguez-Herrera A, Barro F, Sousa C (2013) The gluten-free diet: testing alternative cereals tolerated by celiac patients. Nutrients 5:4250–4268

    CAS  PubMed  PubMed Central  Google Scholar 

  • Costabile A, Santarelli S, Claus S, Sanderson J, Hudspith BN, Brostoff J, Ward JL, Lovegrove A, Shewry PR, Jones HE, Gibson GR (2014) Effect of breadmaking process on in vitro gut microbiota parameters in irritable bowel syndrome. PLoS ONE 9:e111225

    PubMed  PubMed Central  Google Scholar 

  • Couch GW (2016) Effect of sourdough fermentation parameters on bread properties. PhD Theses. 2581, Clemson University, Clemson

  • Davis W (2011) Wheat belly: lose the wheat, lose the weight, and find your path back to health. Rodale Press, Emmaus

    Google Scholar 

  • Day L (2011) Wheat gluten: production, properties and application. In: Phillips GO, Williams PA (eds) Handbook of food proteins. Woodhead Publishing, Sawston, pp 267–288

    Google Scholar 

  • Day L, Augustin MA, Batey IL, Wrigley CW (2006) Wheat-gluten uses and industry needs. Trends Food Sci Technol 17:82–90

    CAS  Google Scholar 

  • De Angelis M, Cassone A, Rizzello CG, Gagliardi F, Minervini F, Calasso M, Di Cagno R, Francavilla R, Gobbetti M (2010) Mechanism of degradation of immunogenic gluten epitopes from Triticum turgidum L. var. durum by sourdough lactobacilli and fungal proteases. Appl Environ Microbiol 76:508–518

    PubMed  Google Scholar 

  • de Lorgeril M, Salen P (2014) Gluten and wheat intolerance today: Are modern wheat strains involved? Int J Food Sci Nutr 65(5):577–581

    PubMed  Google Scholar 

  • De Santis MA, Giuliani MM, Giuzio L, De Vita P, Lovegrove A, Shewry PR, Flagella Z (2017) Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur J Agron 87:19–29

    PubMed  PubMed Central  Google Scholar 

  • De Vos C, Simonsen M, van Oort M, Autton S, Alanen A, Van Caelenberg T (2018) Industry guidelines on the safe handling of enzymes in the bakery supply chain. Ampfep, Fedima, Brussels

    Google Scholar 

  • De Vuyst L, Neysens P (2005) The sourdough microflora: biodiversity and metabolic interactions. Trends Food Sci Technol 16:43–56

    Google Scholar 

  • Deora NS, Deswal A, Mishra HN (2014) Alternative approaches towards gluten-free dough development: recent trend. Food Eng Rev 6:89–104

    CAS  Google Scholar 

  • Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Proteolysis by sourdough lactic acid bacteria: effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Appl Environ Microbiol 68:623–633

    PubMed  PubMed Central  Google Scholar 

  • Di Cagno R, De Angelis M, Auricchio S, Greco L, Clarke C, De Vincenzi M, Giovannini C, D’Archivio M, Landolfo F, Parrilli G (2004) Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Appl Environ Microbiol 70:1088–1096

    PubMed  PubMed Central  Google Scholar 

  • Di Cagno R, Barbato M, Di Camillo C, Rizzello CG, De Angelis M, Giuliani G, De Vincenzi M, Gobbetti M, Cucchiara S (2010) Gluten-free sourdough wheat baked goods appear safe for young celiac patients: a pilot study. J Pediatric Gastroenterol Nutr 51:777–783

    Google Scholar 

  • Di Nardo G, Villa MP, Conti L, Ranucci G, Pacchiarotti C, Principessa L, Raucci U, Paris P (2019) Nutritional Deficiencies in children with celiac disease resulting from a gluten-free diet: a systematic review. Nutrients 11:1588. https://doi.org/10.3390/nu11071588

    Article  CAS  PubMed Central  Google Scholar 

  • Digiacomo D, Tennyson CA, Green PH, Demmer RT (2013) Prevalence of gluten-free diet adherence among individuals without celiac disease in the USA: results from the Continuous National Health and Nutrition Examination Survey 2009–2010. Scand J Gastroenterol 48:921–925

    PubMed  Google Scholar 

  • Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB (2011) Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci 9:10. https://doi.org/10.1186/1477-5956-9-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Khoury D, Balfour-Ducharme S, Joye IJ (2018) A review on the gluten-free diet: technological and nutritional challenges. Nutrients 10:1410

    PubMed Central  Google Scholar 

  • Engstrom N, Sandberg AS, Scheers N (2015) Sourdough fermentation of wheat flour does not prevent the interaction of transglutaminase 2 with α2-gliadin or gluten. Nutrients 7:2136

    Google Scholar 

  • Escarnot E, Dornez E, Verspreet J, Agneessens R, Courtin CM (2015) Quantification and visualization of dietary fibre components in spelt and wheat kernels. J Cereal Sci 62:124–133. https://doi.org/10.1016/j.jcs.2015.01.003

    Article  CAS  Google Scholar 

  • Fasano A, Sapone A, Zevallos V, Schuppan D (2015) Non-celiac gluten sensitivity. Gastroenterology 148:1195–1204

    CAS  PubMed  Google Scholar 

  • Florides C, Juhász A, Ma W, Vanniasinkam T, Eastwood R, Békés F, Blanchard CL (2019) A gluten protein allergenicity study in Australian wheat varieties from historic times to present. In: Cereals and grains conf of AACCI, London, 21–23 Oct

  • Ford R (2008) The gluten syndrome is wheat causing you harm?. RRS Global LT, Christchurch

    Google Scholar 

  • Frakolaki G, Giannou V, Topakas E, Tzia C (2018) Chemical characterization and breadmaking potential of spelt versus wheat flour. J Cereal Sci 79:50–56

    CAS  Google Scholar 

  • Frazer AC, Fletcher RF, Ross CAC, Shaw B, Sammons HG, Schneider R (1959) Gluten-induced enteropathy the effect of partially digested gluten. Lancet 2:252–255

    CAS  PubMed  Google Scholar 

  • Fretzdorff B, Welge N (2003a) Fructan- und Raffinosegehalte im Vollkorn einiger Getreidearten und Pseudo-Cerealien. Getreide Mehl Brot 57:3–8

    CAS  Google Scholar 

  • Fretzdorff B, Welge N (2003b) Abbau von getreideeigenen Fructanen während der Herstellung von Roggenvollkornbrot. Getreide Mehl Brot 57:147–151

    CAS  Google Scholar 

  • Ganzle MG, Loponen J, Gobbetti M (2008) Proteolysis in sourdough fermentations: mechanisms and potential for improved bread quality. Trends Food Sci Technol 19:513–521

    CAS  Google Scholar 

  • Garcia-Maroto F, Marana C, Mena M, Garcia-Olmedo F, Carbonero P (1990) Cloning of cDNA and chromosomal location of genes encoding the three types of subunits of the wheat tetrameric inhibitor of insect α-amylase. Plant Mol Biol 14:845–853

    CAS  PubMed  Google Scholar 

  • Garcia-Maroto F, Carbonero P, Garcia-Olmedo F (1991) Site-directed mutagenesis and expression in Escherichia coli of WMAI-1, a wheat monomeric inhibitor of insect α-amylase. Plant Mol Biol 17:1005–1011

    CAS  PubMed  Google Scholar 

  • García-Molina MD, Giménez MJ, Sánchez-Leon S, Barro F (2019) Gluten free wheat: are we there? Nutrients 11:487

    PubMed Central  Google Scholar 

  • Geisslitz S, Ludwig C, Scherf KA, Koehler P (2018) Targeted LC − MS/MS reveals similar contents of α-amylase/trypsin-inhibitors as putative triggers of nonceliac gluten sensitivity in all wheat species except einkorn. J Agric Food Chem 66:12395–12403

    CAS  PubMed  Google Scholar 

  • Gelinas P, McKinnon C, Gagnon F (2016) Fructans, water-soluble fibre and fermentable sugars in bread and pasta made with ancient and modern wheat. Int J Food Sci Technol 51:555–564

    CAS  Google Scholar 

  • Gell Gy, Kovács K, Molnár I, Zs Bugyi, Tömösközi S, Juhász A (2015) CD-specific prolamin peptide content of wheat relatives and wild species determined by ELISA assays and bioinformatics analyses. Cereal Res Commun 43:133–143

    CAS  Google Scholar 

  • Gerez CL, Rollan GC, de Valdez G (2006) Gluten breakdown by lactobacilli and pediococci strains isolated from sourdough. Lett Appl Microbiol 42:459–464

    CAS  PubMed  Google Scholar 

  • Gerez CL, Dallagnol A, Rollan G, de Valdez GV (2012) A combination of two lactic acid bacteria improves the hydrolysis of gliadin during wheat dough fermentation. Food Microbiol 32:427–430

    CAS  PubMed  Google Scholar 

  • Gianfrani C, Maglio M, Aufiero VR, Camarca A, Vocca I, Iaquinto G, Giardullo N, Pogna N, Troncone R, Auricchio S, Mazzarella G (2012) Immunogenicity of monococcum wheat in celiac patients. Am J Clin Nutr 96:1339–1345

    CAS  PubMed  Google Scholar 

  • Gibson PR, Shepherd SJ (2005) Food for thought: western lifestyle and susceptibility to Crohn’s disease: the FODMAP hypothesis. Alim Pharm Ther 2:1399–1409

    Google Scholar 

  • Gibson PR, Shepherd S (2010) Evidence-based dietary management of functional gastrointestinal symptoms: the FODMAP approach. J Gastroenterol Hepatol 25:252–258

    PubMed  Google Scholar 

  • Gibson GR, Ottaway PB, Rastall RA (2000) Prebiotics: new developments in functional foods. Chandos, Oxford

    Google Scholar 

  • Gibson PR, Newnham E, Barrett JS, Shepherd SJ, Muir JG (2007) Review article: fructose malabsorption and the bigger picture. Aliment Pharmacol Ther 25:349–363

    CAS  PubMed  Google Scholar 

  • Gobbetti M, Rizzello CG, Di Cagno R, De Angelis M (2014) How the sourdough may affect the functional features of leavened baked goods. Food Microbiol 37:30–40

    CAS  PubMed  Google Scholar 

  • Grabitske HA, Slavin JL (2009) Gastrointestinal effects of low-digestible carbohydrates. Crit Rev Food Sci Nutr 49:327–369

    CAS  PubMed  Google Scholar 

  • Grausgruber H, Lovegrove A, Shewry PR, Békés F (2019) FODMAP in wheat. In: Igrejas G, Ikeda T, Guzman C (eds) Improving wheat quality for processing and health. Springer, Berlin, pp 515–532

    Google Scholar 

  • Greco L, Gobbetti M, Auricchio R, Maglio M, Troncone R, Auricchio S (2011) Safety for celiac patients of baked goods made of wheat flour hydrolyzed during food processing. Clin Gastroenterol Hepatol 9:24–29

    PubMed  Google Scholar 

  • Gregorini A, Colomba M, Ellis HJ, Ciclitira PJ (2009) Immunogenicity characterization of two ancient wheat alpha-gliadin peptides related to coeliac disease. Nutrients 1:276–290

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guandalini S, Polanco I (2015) Nonceliac gluten sensitivity or wheat intolerance syndrome? J Pediatr 166:805–811

    PubMed  Google Scholar 

  • Guilliani G (2012) Method for partial degradation of gluten. Patent: WO 2014/033765 Al

  • Hallert C, Grant C, Grehn S, Granno C, Hulten S, Midhagen G, Strom M, Svensson H, Valdimarsson T (2002) Evidence of poor vitamin status in coeliac patients on a gluten-free diet for 10 years. Aliment Pharmacol Ther 16:1333–1339

    CAS  PubMed  Google Scholar 

  • Halmos EP, Power VA, Shepherd SJ, Gibson PR, Muir JG (2014) A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology 146:67–75

    CAS  PubMed  Google Scholar 

  • Halmos EP, Christophersen CT, Bird AR, Shepherd SJ, Gibson PR, Muir JG (2015) Diets that differ in their FODMAP content alter the colonic luminal microenvironment. Gut 64:93–100

    CAS  PubMed  Google Scholar 

  • Hammerton RW, Ho T-HD (1986) Hormonal regulation of the development of protease and carboxypeptidase activities in barley aleurone layers. Plant Physiol 80:692–697

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann G, Koehler P, Wieser H (2006) Rapid degradation of gliadin peptides toxic for coeliac disease patients by proteases from germinating cereals. J Cereal Sci 44:368–371

    CAS  Google Scholar 

  • Haska L, Nyman M, Andersson R (2008) Distribution and characterisation of fructan in wheat milling fractions. J Cereal Sci 48:768–774

    CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    CAS  Google Scholar 

  • Heredia-Sandoval NG, Valencia-Tapia MY, Calderón de la Barca AM, Islas-Rubio AR (2016) Microbial proteases in baked goods: modification of gluten and effects on immunogenicity and product quality. Foods 5:59. https://doi.org/10.3390/foods5030059

    Article  CAS  PubMed Central  Google Scholar 

  • Hesser JM (1987) Use and functionality of wheat gluten. In: Lásztity R, Békés F (eds) Proc. 3rd international gluten workshop, Budapest. Word Sci., Singapore, pp 441–455

  • Huang X, Schuppan D, Tovar LER, Zevallos VF, Loponen J, Ganzle M (2020) Sourdough fermentation degrades wheat alpha-amylase/trypsin inhibitor (ATI) and reduces pro-inflammatory activity. Foods 9:943

    CAS  PubMed Central  Google Scholar 

  • Hungin APS, Whorwell PJ, Tack J, Mearin F (2003) The prevalence, patterns and impact of irritable bowel syndrome: an international survey of 40,000 subjects. Aliment Pharmacol Ther 17:643–650

    CAS  PubMed  Google Scholar 

  • Islam S, Ma W, Yan G, Békés F, Appels R (2011) Modifying processing and health attributes of wheat bread through changes in composition genetics and breeding. In: Cauvain SP, Tran B (eds) Bread making, improving quality, 2nd edn. Woodhead Publishing Limited, Cambridge, pp 259–296

    Google Scholar 

  • Izadi-Darbandi A, Yazdi-Samadi B, Shanejat-boushehri AA (2010) Allelic variations in Glu-1 and Glu-3 loci of historical and modern Iranian bread wheat (Triticum aestivum L.) cultivars. J Genet 89:193–199

    PubMed  Google Scholar 

  • Jargon J (2014) The gluten-free craze: is it healthy?. Wall Street J. https://www.wsj.com/articles/how-we-eat-the-gluten-free-craze-is-it-healthy-1403491041

  • Jones JM, Adams J, Harriman C, Miller C, Van der Kamp JW (2015) Nutritional impacts of different whole grain milling techniques: a review of milling practices and existing data. Cereal Food World 60:130–139

    Google Scholar 

  • Jouanin A, Boyd L, Visser RGF, Smulders MJM (2018a) Development of wheat with hypoimmunogenic gluten obstructed by the gene editing policy in Europe. Front Plant Sci 9:1523

    PubMed  PubMed Central  Google Scholar 

  • Jouanin A, Gilissen LJWJ, Boyd LA, Cockram J, Leigh FJ, Wallington EJ, Smulders R (2018b) Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Res Int 110:11–21

    CAS  PubMed  Google Scholar 

  • Juhász A, Belova T, Florides CG, Maulis C, Fischer I, Gell G, Birinyi Z, Ong J, Keeble-Gagnere G, Maharajan A (2018) Genome mapping of seed-borne allergens and immunoresponsive proteins in wheat. Sci Adv 4:eaar8602

    PubMed  PubMed Central  Google Scholar 

  • Juhász A, Haraszi R, Békés F (2020) Effects of environmental changes on the allergen content of wheat grain. In: Igrejas G, Tatsuya Ikeda T, Guzman C (eds) Improving wheat quality for processing and health. Springer, Berlin, pp 451–468

    Google Scholar 

  • Junker Y, Zeissig S, Kim S-J, Barisani D, Wieser H, Leffler DA, Zevallos V, Libermann TA, Dillon S, Freitag TL, Kelly CP, Schuppan D (2012) Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of toll-like receptor 4. J Exp Med 209:2395–2408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasarda DD (2013) Can an increase in celiac disease be attributed to an increase in the gluten content of wheat as a consequence of wheat breeding? J Agric Food Chem 61:1155–1159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kleessen B, Schwarz S, Boehm A, Fuhrmann H, Richter A, Henle T, Krueger M (2007) Jerusalem artichoke and chicory inulin in bakery products affect faecal microbiota of healthy volunteers. Br J Nutr 98:540–549

    CAS  PubMed  Google Scholar 

  • Knez M, Abbott C, Stangoulis JCR (2014) Changes in the content of fructans and arabinoxylans during baking processes of leavened and unleavened breads. Eur Food Res Technol 239:803–811

    CAS  Google Scholar 

  • Knudsen KEB (1997) Carbohydrate and lignin contents of plant materials used in animal feeding. Anim Feed Sci Technol 67:319–338

    Google Scholar 

  • Kolida S, Gibson GR (2007) Prebiotic capacity of inulin-type fructans. J Nutr 137:2503S–2506S

    CAS  PubMed  Google Scholar 

  • Kristensen MT (2016) Gluten degradation in long time fermented dough. MSc thesis, Univ Copenhagen, Denmark

  • Kucek LK, Veenstra LD, Amnuaycheewa P, Sorrells ME (2015) A grounded guide to gluten: how modern genotypes and processing impact wheat sensitivity. Compr Rev Food Sci Food Saf 14:285–302

    CAS  PubMed  Google Scholar 

  • Kulp K (1993) Enzymes as dough improvers. In: Kamel BS, Stauffer CE (eds) Advances in baking technology. Springer, New York, pp 152–165

    Google Scholar 

  • Kusaba-Nakayama M, Ki M, Iwamoto M, Shibata R, Sato M, Imaizumi K (2000) CM3, one of the wheat alpha-amylase inhibitor subunits, and binding of IgE in sera from Japanese with atopic dermatitis related to wheat. Food Chem Toxicol 38:179–185

    CAS  PubMed  Google Scholar 

  • Laidig F, Piepho HP, Rentel D, Drobek T, Meyer U, Huesken A (2017) Breeding progress, environmental variation and correlation of winter wheat yield and quality traits in German official variety trials and on-farm during 1983–2014. Theor Appl Genet 130:223–245

    PubMed  Google Scholar 

  • Lamacchia C, Camarca A, Picascia S, Di Luccia A, Gianfrani C (2014) Cereal-based gluten-free food: how to reconcile nutritional and technological properties of wheat proteins with safety for celiac disease patients. Nutrients 6:575–590

    PubMed  PubMed Central  Google Scholar 

  • Laurière M, Pecquet C, Bouchez-Mahiout I, Snégaroff J, Bayrou O, Raison-Peyron N, Vigan M (2006) Hydrolysed wheat proteins present in cosmetics can induce immediate hypersensitivities. Contact Dermat 54(5):283–289

    Google Scholar 

  • Leduc V, Moneret-Vautrin D-A, Guerin L, Morisset M, Kanny G, Allerbio L, Argonne V (2003) Anaphylaxis to wheat isolates: immunochemical study of a case proved by means of double-blind, placebo-controlled food challenge. J Allergy Clin Immunol 111:897–899

    PubMed  Google Scholar 

  • Loponen J, Ganzle MG (2018) Use of sourdough in low FODMAP baking. Foods 7:96

    PubMed Central  Google Scholar 

  • Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2003) Degradation of HMW glutenins during wheat sourdough fermentations. Cereal Chem 81:87–93

    Google Scholar 

  • Loponen J, Sontag-Strohm T, Venalainen J, Salovaara H (2007) Prolamin hydrolysis in wheat sourdoughs with differing proteolytic activities. J Agric Food Chem 55:978–984

    CAS  PubMed  Google Scholar 

  • Ludvigsson JF, Rubio-Tapia A, van Dyke CT, Melton LJ, Zinsmeister AR, Lahr BD, Murray JA (2013) Increasing incidence of celiac disease in a North American population. Am J Gastroenterol 108:818–824

    PubMed  PubMed Central  Google Scholar 

  • Lyons TP (1982) Proteinase enzymes relevant to the baking industry. Biochem Soc Trans 10(4):287–290

    CAS  PubMed  Google Scholar 

  • Malalgoda MMG (2016) Investigation of protein composition in historic and modern hard red spring wheat cultivars. PhD thesis.Nort Dakota Fargo

  • Malalgoda MMG, Manthey F, Simsek S (2018) Reducing the celiac disease antigenicity of wheat. Cereal Chem 95:49–58

    CAS  Google Scholar 

  • Manti S, Cuppari C, Tardino L, Parisi G, Spina M, Salpietro C, Leonardi S (2017) Applied nutritional investigation: HMGB1 as a new biomarker of celiac disease in children: a multicenter study. Nutrition 37:18–21

    CAS  PubMed  Google Scholar 

  • Mardini HE, Westgate AP, Grigorian RY (2015) Differences in the prevalence of celiac disease in the US population: National Health and Nutrition Examination Survey (NHANES) 2009–2012. Dig Dis Sci 60:1738–1742

    PubMed  Google Scholar 

  • Marriott BP, Cole N, Lee E (2009) National estimates of dietary fructose intake increased from 1977 to 2004 in the United States. J Nutr 139:1228S–1235S

    CAS  PubMed  Google Scholar 

  • Hester K, Saliba A, McIntyre,E (2017). A preliminary exploration of non-coeliac gluten avoidance behaviours in Australia. GRDC Updata Papers, 14 Feb 2017

  • Melim-Miguel AS, Martins-Meyer TS, da Costa Figueiredo EV, Paulo-Lobo PW, Dellamora-Ortiz GM (2013) Enzymes in bakery: current and future trends. In: Muzzalupo I (ed) Food industry. InTech, Rijeka

    Google Scholar 

  • Melini V, Melin F (2019) Gluten-Free Diet: gaps And Needs For A Healthier Diet. Nutrients 11:170

    CAS  PubMed Central  Google Scholar 

  • Messer M, Anderson CM, Hubbard L (1964) Studies on the mechanism of destruction of toxic action of wheat gluten in celiac disease by crude papain. Gut 5:295–303

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mohler V, Schweizer G, Hartl L (2011) Bread-making quality and grain yield in German winter wheat. II. Marker-trait associations. 61. Tagung der Vereinigung der Pflanzenzuechter und Saatgutkaufleute Oesterreichs 2010:29–31

  • Molberg O, Uhlen AK, Jensen T, Flate NS, Fleckenstein B, Arentz-Hansen H, Raki M, Lundin KE, Sollid LM (2005) Mapping of gluten T-cell epitopes in the bread wheat ancestors: implications for celiac disease. Gastroenterology 128:393–401

    CAS  PubMed  Google Scholar 

  • Molina-Infante J, Carroccio A (2017) Suspected nonceliac gluten sensitivity confirmed in few patients after gluten challenge in double-blind, placebo-controlled trials. Clin Gastroenterol Hepatol 15:339–348

    PubMed  Google Scholar 

  • Morita E, Matsuo H, Chinuki Y, Takahashi H, Dahlstrom J, Tanaka A (2009) Food-dependent exercise-induced anaphylaxis importance of omega-5 gliadin and HMW-glutenin as causative antigens for wheat-dependent exercise-induced anaphylaxis. Allergol Int 58:493–498

    CAS  PubMed  Google Scholar 

  • Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an ancient technology to solve a novel issue? Food Microbiol 26:676–684

    CAS  PubMed  Google Scholar 

  • Morren M-A, Janssens V, Dooms-Goossens A, Van Hoeyveld E, Cornelis A, De Wolf-Peeters C, Heremans A (1993) Alpha-Amylase, a flour additive: an important cause of protein contact dermatitis in bakers. J Am Acad Dermatol 29:723–728

    CAS  PubMed  Google Scholar 

  • Muir JG, Shepherd SJ, Rosella O, Rose R, Gibson PR (2007) Fructan and free fructose content of common Australian vegetables and fruit. J Agric Food Chem 55:6619–6627

    CAS  PubMed  Google Scholar 

  • Muir JG, Rose R, Rosella O, Liels K, Barrett JS, Shepherd SJ, Gibson PR (2009) Measurement of short-chain carbohydrates in common Australian vegetables and fruits by high-performance liquid chromatography. J Agric Food Chem 57:554–565

    CAS  PubMed  Google Scholar 

  • Muir JG, Mills J, Suter D, Békés F, Liels K, Yao LK, Gibson PR (2014) FODMAP in gluten-free grains may explain improved gastrointestinal symptoms in IBS on a gluten-free diet. J Nutr Intermed Metab 1:14–15

    Google Scholar 

  • Mustalahti K, Catassi C, Reunanen A, Fabiani E, Heier M, McMillan S, Murray L, Metzger MH, Gasparin M, Bravi E, Maki M (2010) Coeliac EU Cluster, Project Epidemiology. The prevalence of celiac disease in Europe: results of a centralized, international mass screening project. Ann Med 42:587–595

    PubMed  Google Scholar 

  • Nilsson U, Oste R, Jagerstad M (1987) Cereal fructans: hydrolysis by yeast invertase, in vitro and during fermentation. J Cereal Sci 6:53–60

    CAS  Google Scholar 

  • Oberforster M, Werteker M (2011) Inverse and non-inverse relations between grain yield and quality in the Austrian cultivars of wheat, barley and rye. 61. Tagung der Vereinigung der Pflanzenzuechter und Saatgutkaufleute Oesterreichs 2010, pp 9–17

  • Ortolan F, Steel CJ (2017) Protein characteristics that affect the quality of vital wheat gluten to be used in baking: a review. Compr Rev Food Sci Food Saf 16:369–381

    CAS  PubMed  Google Scholar 

  • Oury FX, Godin C (2007) Yield and grain protein concentration in bread wheat: How to use the negative relationship between the two characters to identify favourable genotypes? Euphytica 157:45–57

    CAS  Google Scholar 

  • Parapouli M, Vasileiadis A, Afendra AS, Hatziloukas E (2019) Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol 6:1–31

    Google Scholar 

  • Pasco JA, Nicholson GC, Kotowicz MA (2012) Cohort profile: geelong osteoporosis study. Int J Epidemiol 41:1565–1575

    PubMed  Google Scholar 

  • Pasini G, Simonato B, Giannattasio M, Peruo ADB, Curioni A (2001) Modifications of wheat flour proteins during in vitro digestion of bread dough, crumb, and crust: an electrophoretic and immunological study. J Agric Food Chem 49:2254–2261

    CAS  PubMed  Google Scholar 

  • Pauk J, Cs Lantos, Ács K, Gy Gell, Tömösközi S, Békés F (2019) Chapter 18. Spelt breeding via in vitro androgenesis for special food quality parameters. In: Al-Khayri JM, Jain SM, Johnson DV (eds) Advances in plant breeding strategies. Volume 5. Cereals and legumes, vol 5. Springer, Berlin, pp 525–558

    Google Scholar 

  • Penagini F, Dilillo D, Meneghin F, Mameli C, Fabiano V, Zuccotti GV (2013) Gluten-free diet in children: an approach to a nutritionally adequate and balanced diet. Nutrients 5:4553–4565

    PubMed  PubMed Central  Google Scholar 

  • Pepe O, Villani F, Oliviero D, Greco T, Coppola S (2003) Effect of proteolytic starter cultures as leavening agents of pizza dough. Int J Food Microbiol 84:319–326

    CAS  PubMed  Google Scholar 

  • Pizzuti D, Buda A, D’Odorico A, D’Inca R, Chiarelli S, Curioni A, Martines D (2006) Lack of intestinal mucosal toxicity of Triticum monococcum in celiac disease patients. Scand J Gastroenterol 41:1305–1311

    CAS  PubMed  Google Scholar 

  • Prandi B, Faccini A, Tedeschi T, Cammerata A, Sgrulletta D, D’Egidio MG, Sforza S (2014) Qualitative and quantitative determination of peptides related to celiac disease in mixtures derived from different methods of simulated gastrointestinal digestion of wheat products. Anal Bioanal Chem 406:4765–4775

    CAS  PubMed  Google Scholar 

  • Prandi B, Tedeschi T, Folloni S, Galaverna G, Sforza S (2017) Peptides from gluten digestion: a comparison between old and modern wheat varieties. Food Res Int 91:92–102

    CAS  PubMed  Google Scholar 

  • Praznik W, Cieslik E, Filipiak-Florkiewicz A (2002) Soluble dietary fibres in Jerusalem artichoke powders: composition and application in bread. Nahrung 46:151–157

    CAS  PubMed  Google Scholar 

  • Quirce S, Cuevas M, Dıez-Gomez ML, Fernandez-Rivas M, Hinojosa M, Gonzalez R, Losada E (1992) Respiratory allergy to Aspergillus-derived enzymes in bakers’ asthma. J Allergy Clin Immunol 90:970–978

    CAS  PubMed  Google Scholar 

  • Quirce S, Fernandez-Nieto M, Bartolome B, Bombın C, Cuevas M, Sastre J (2002) Glucoamylase: another fungal enzyme associated with baker’s asthma. Ann Allergy Asthma Immunol 89:197–202

    CAS  PubMed  Google Scholar 

  • Rakha A, Åman P, Andersson R (2011) Dietary fiber in triticale grain: variation in content, com-position, and molecular weight distribution of extractable components. J Cereal Sci 54:324–331

    CAS  Google Scholar 

  • Reig-Otero Y, Manes J, Manyes L (2017) Amylase-trypsin inhibitors in wheat and other cereals as potential activators of the effects of nonceliac gluten sensitivity. J Med Food 21:207–218

    Google Scholar 

  • Rewers M (2005) Epidemiology of celiac disease: What are the prevalence, incidence, and progression of celiac disease? Gastroenterology 128:S47–S51

    PubMed  Google Scholar 

  • Riaz Q, Ács K, Békés F, Eastwood RF, Farahnaky A, Majzoobi M, Blanchard CL (2019a) Fructan contents in Australian wheat varieties released over the last 150 years. Cereal Res Commun 47:669–677

    CAS  Google Scholar 

  • Riaz Q, Farahnaky A, Majzoobi M, Pleming D, Eastwood R, Békés F, Blanchard CL (2019b) Investigating the changes in quality of historical and modern Australian wheat varieties. In: Cereals and grains conf of AACCI, London, 21–23 Oct

  • Ribeiro M, Rodriguez-Quijano M, Nunes FM, Carrillo JM, Branlard G, Igrejas G (2016) New insights into wheat toxicity: breeding did not seem to contribute to a prevalence of potential celiac disease’s immunostimulatory epitopes. Food Chem 213:8–18

    CAS  PubMed  Google Scholar 

  • Rizzello CG, De Angelis M, Di Cagno R, Camarca A, Silano M, Losito I, De Vincenzi M, De Bari MD, Palmisano F, Maurano F (2007) Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: new perspectives for celiac disease. Appl Environ Microbiol 73:4499–4507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzello CG, Curiel JA, Nionelli L, Vincentini O, Di Cagno R, Silano M, Gobbetti M, Coda R (2014) Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiol 37:59–68

    CAS  PubMed  Google Scholar 

  • Roberfroid M (1993) Dietary fiber, inulin, and oligofructose: a review comparing their physiological effects. Crit Rev Food Sci Nutr 33:103–148

    CAS  PubMed  Google Scholar 

  • Rollan G, De Angelis M, Gobbetti M, de Valdez GF (2005) Proteolytic activity and reduction of gliadin-like fractions by sourdough lactobacilli. J Appl Microbiol 99:1495–1502

    CAS  PubMed  Google Scholar 

  • Ross AS (2018) Flour quality and artisan bread. Cereal Foods World 63:57–62

    Google Scholar 

  • Rumessen JJ, Gudmand-Hoyer E (1998) Fructans of chicory: intestinal transport and fermentation of different chain lengths and relation to fructose and sorbitol malabsorption. Am J Clin Nutr 68:357–364

    CAS  PubMed  Google Scholar 

  • Rustgi S, Shewry PR, Brouns F, Deleu LJ, Delcour JA (2019) Wheat seed proteins: factors influencing their content, composition, and technological properties, and strategies to reduce adverse reactions. Compr Rev Food Sci Food Saf 18:1751–1769

    CAS  PubMed  Google Scholar 

  • Rybalka AI (2017) Is wheat indeed a destructive food product? Plant Physiol Genet 49:188–210

    Google Scholar 

  • Sakandar HA, Kubow S, Azadi B, Faryal R, Ali B, Ghazanfar S, Quraishi UM, Imran M (2019) Wheat fermentation with enterococcus mundtii QAUSD01 and Wickerhamomyces anomalus QAUWA03 consortia induces concurrent gliadin and phytic acid degradation and inhibits gliadin toxicity in caco-2 monolayers. Front Microbiol 9:3312

    PubMed  PubMed Central  Google Scholar 

  • Salentijn EMJ, Goryunova SV, Bas N, Meer IM, Broeck HC, Bastien T, Gilissen LJWJ, Smulders MJM (2009) Tetraploid and hexaploid wheat varieties reveal large differences in expression of alpha-gliadins from homoeologous Gli-2 loci. BMC Genom 10:1–14

    Google Scholar 

  • Sanchez-Monge R, Garcia-Casado G, Lopez-Otin C, Armentia A, Salcedo G (1997) Wheat flour peroxidase is a prominent allergen associated with baker’s asthma. Clin Exp Allergy 27:1130–1137

    CAS  PubMed  Google Scholar 

  • Sander I, Raulf-Heimsoth M, Siethoff C, Lohaus C, Meyer HE, Baur X (1998) Allergy to Aspergillus-derived enzymes in the baking industry: identification of β-xylosidase from Aspergillus niger as a new allergen (Asp n 14). J Allergy Clin Immunol 102:256–264

    CAS  PubMed  Google Scholar 

  • Sandiford CP, Tatham AS, Fido R, Welch JA, Jones MG, Tee RD, Shewry PR, Newman Taylor AJ (1997) Identification of the major water/salt insoluble wheat proteins involved in cereal hypersensitivity. Clin Exp Allergy 27:1120–1129

    CAS  PubMed  Google Scholar 

  • Saturni L, Ferretti G, Bacchetti T (2010) The gluten-free diet: safety and nutritional quality. Nutrients 2:16–34

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schober TJ, Clarke CI, Kuhn M (2002) Characterization of functional properties of gluten proteins in spelt cultivars using rheological and quality factor measurements. Cereal Chem 79:408–441

    CAS  Google Scholar 

  • Schwalb T, Wieser H, Koehler P (2012) Studies on the gluten-specific peptidase activity of germinated grains from different cereal species and cultivars. Eur Food Res Technol 235:1161–1170

    CAS  Google Scholar 

  • Sherman JD, Nash D, Lanninng SP, Martin JM, Blake NK, Morris CF, Talbert LE (2014) Genetics and end-use quality differences between modern and historical spring wheat. Crop Sci 54:1972–1980

    Google Scholar 

  • Shewry PR (2019) What is gluten—Why is it special? Front Nutr 6:101

    PubMed  PubMed Central  Google Scholar 

  • Shewry PR, Tatham AS (2016) Improving wheat to remove coeliac epitopes but retain functionality. J Cereal Sci 67:12–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Siddiqi RA, Sogi DS, Sehajpal PK (2016) Effect of short-term sourdough fermentation on wheat protein. Cogent Food Agric 2(1132983):1–10

    Google Scholar 

  • Siles RI, Hsieh FH (2013) Allergy blood testing: a practical guide for clinicians. Clevel Clin J Med 78:585–592

    Google Scholar 

  • Simmonds NW (1995) The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315

    CAS  Google Scholar 

  • Singh P, Arora A, Strand TA, Leffler DA, Catassi C, Green PH, Kelly CP, Ahuja V, Makharia GK (2018) Global prevalence of celiac disease: systematic review and meta-analysis. Clin Gastroenterol Hepatol 16:823–836

  • Spaenij-Dekking L, Kooy-Winkelaar Y, van Veelen P, Wouter D, Drijfheut J, Jonker H, van Soest L, Smulders MM, Bosch D, Gilissen LJWJ, Koning F (2005) Natural variation in toxicity of wheat: potential for selection of nontoxic varieties for celiac disease patients. Gastroenterology 129:797–806

    CAS  PubMed  Google Scholar 

  • Stallknecht G, Gilbertson K, Ranney J (1996) Alternative wheat cereals as food grains: einkorn, emmer, spelt, kamut, and triticale. In: Janick J (ed) Proc 3rd nat symp: new crops, new opportunities, new technologies, Indianapolis. ASHS Press, Alexandria, pp 156–170

  • Stepniak D, Spaenij-Dekking L, Mitea C, Moester M, de Ru A, Baak-Pablo R, Van Velen P, Edens L, Koning F (2006) Highly efficient gluten degradation with a newly identified prolyl endoprotease: implications for celiac disease. Am J Physiol Gastrointest Liver Physiol 291:G621–G629

    CAS  PubMed  Google Scholar 

  • Struyf N, Laurent J, Lefevere B, Verspreet J, Verstrepen KJ, Courtin CM (2017a) Establishing the relative importance of damaged starch and fructan as sources of fermentable sugars in wheat flour and whole meal bread dough fermentations. Food Chem 218:89–98

    CAS  PubMed  Google Scholar 

  • Struyf N, Van der Maelen E, Hemdane S, Verspreet J, Verstrepen KJ, Courtin CM (2017b) Bread dough and baker’s yeast: an uplifting synergy. Compr Rev Food Sci Food Saf 16:850–867

    CAS  PubMed  Google Scholar 

  • Struyf N, Verspreet J, Courtin CM (2018) FODMAP reduction in yeast-leavened whole wheat bread. Cereal Food World 63:152–154

    CAS  Google Scholar 

  • Suligoj T, Gregorini A, Colomba M, Ellis HJ, Ciclitira PJ (2013) Evaluation of the safety of ancient strains of wheat in coeliac disease reveals heterogeneous small intestinal T cell responses suggestive of coeliac toxicity. Clin Nutr 32:1043–1049

    CAS  PubMed  Google Scholar 

  • Suter DAI, Brown G, Békés F (2018) Development of spelt wheat products with low FODMAP content and low allergenicity. In: 1st internat. conf. “Wheat Landraces for healthy food systems”, Bologna, 13–15 June 2018

  • Suter DAI, Békés F, Florides C, Ács K, Durant M, Brown G (2019a) Why do so many consumers purchase “gluten free” breads. In: Australian grains science conference, Melbourne, 27–29 Aug 2019

  • Suter DAI, Brown G, Békés F (2019b) A possible explanation for the gluten free phenomenon. In: AIFST conf. Sydney. 1 July 2019

  • Tatham AS, Shewry PR (2008) Allergens to wheat and related cereals. Clin Exp Allergy 38:1712–1726

    CAS  PubMed  Google Scholar 

  • Thiele C (2003) Hydrolysis of gluten and the formation of flavor precursors during sourdough fermentation. PhD thesis, Techn. Univ, Munich

  • Thiele C, Grassl S, Ganzle M (2004) Gluten hydrolysis and depolymerization during sourdough fermentation. J Agric Food Chem 52:1307–1314

    CAS  PubMed  Google Scholar 

  • Tosi P, Gritsch CS, He J, Shewry PR (2011) Distribution of gluten proteins in bread wheat (Triticum aestivum) grain. Ann Bot 108:23–35

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tye-Din JA, Galipeau HJ, Agardh D (2018) Celiac disease: a review of current concepts in pathogenesis, prevention, and novel therapies. Front Pediatr 21:350

    Google Scholar 

  • Uhde M, Ajamian M, Caio G, De Giorgio R, Indart A, Green PH, Verna EC, Volta U, Alaedini A (2016) Intestinal cell damage and systemic immune activation in individuals reporting sensitivity to wheat in the absence of coeliac disease. BMJ J 65:1930–1937

    CAS  Google Scholar 

  • Uhde M, Caio G, De Giorgio R, Green PH, Volta U, Alaedini A (2020) Subclass profile of IgG antibody response to gluten differentiates non-celiac gluten sensitivity from celiac disease. Gastroenterology S0016–5085(20):34992

    Google Scholar 

  • Vaccino P, Becker HA, Brandolini A, Salamini F, Kilian B (2009) A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Mol Genet Genomics 281:289–300

    CAS  PubMed  Google Scholar 

  • Vader W, Kooy Y, van Veelen P, de Ru A, Harris D, Benckhuijsen W, Pena S, Mearin L, Drijfhout JW, Koning F (2002) The gluten response in children with celiac disease is directed toward multiple gliadin and glutenin peptides. Gastroenterology 122:1729–1737

    CAS  PubMed  Google Scholar 

  • van den Broeck HC, Hongbing C, Lacaze X, Dusautoir J-C, Gilissen LJ, Smulders MJ, van der Meer IM (2010a) In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes. Mol BioSyst 6:2206–2213

    PubMed  Google Scholar 

  • van den Broeck HC, de Jong HC, Salentijn EMJ, Dekking L, Bosch D, Hamer RJ, Gilissen LJWJ, van der Meer IM, Smulders MJM (2010b) Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease. Theor Appl Genet 121:1527–1539

    PubMed  PubMed Central  Google Scholar 

  • van Herpen TWJM, Goryunova SV, van der Schoot J, Mitreva M, Salentijn E, Vorst O, Schenk MF, van Veelen PA, Koning F, van Soest LJM (2006) Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes. BMC Genom 7:1. https://doi.org/10.1186/1471-2164-7-1

    Article  CAS  Google Scholar 

  • Verspreet J, Hemdane S, Dornez E, Cuyvers S, Delcour JA, Courtin CM (2013) Maximizing the concentrations of wheat grain fructans in bread by exploring strategies to prevent their yeast (Saccharomyces cerevisiae)–mediated degradation. J Agric Food Chem 61:1397–1404

    CAS  PubMed  Google Scholar 

  • Vincentini O, Maialetti F, Gazza L, Silano M, Dessi M, De Vincenzi M, Pogna NE (2007) Environmental factors of celiac disease: cytotoxicity of hulled wheat species Triticum monococcum, T. turgidum ssp. dicoccum and T. aestivum ssp. spelta. J Gastroenterol Hepatol 22:1816–1822

    CAS  PubMed  Google Scholar 

  • Vincentini O, Borrelli O, Silano M, Gazza L, Pogna N, Luchetti R, De Vincenzi M (2009) T-cell response to different cultivars of farro wheat, Triticum turgidum ssp. dicoccum, in celiac disease patients. Clin Nutr 28:272–277

    CAS  PubMed  Google Scholar 

  • Vu NT, Chin J, Pasco JA, Kovács A, Wing LW, Békés F, Suter DAI (2014) The prevalence of wheat and spelt sensitivity in a randomly selected Australian population. Cereal Res Commun 43:97–107

    Google Scholar 

  • Walter T, Wieser H, Koehler P (2015) Degradation of gluten in rye sourdough products by means of a proline-specific peptidase. Eur Food Res Technol 240:517–524

    CAS  Google Scholar 

  • Wang DW, Li D, Wang J, Zhao Y, Wang Z, Yue G, Liu X, Qin H, Zhang K, Dong L, Wang D (2017) Genome-wide analysis of complex wheat gliadins, the dominant carriers of celiac disease epitopes. Sci Rep 7:44609

    PubMed  PubMed Central  Google Scholar 

  • Wangen S (2009) Healthier without wheat. A new understanding of wheat allergies, Celiac disease and non-celiac gluten intolerance. Innate Health Publ, Seattle

  • Yuan J, Zhou C, Gao J, Li J, Yu F, Lu J, Li X, Wang X, Tong P, Wu Z, Yang A, Yao Y, Nadif S, Shu H, Xu J, Wu Y, Gilissen L, Chen H (2017) Prevalence of celiac disease autoimmunity among adolescents and young adults in China. Clin Gastroenterol Hepatol S1542–3565(17):30468–8

    Google Scholar 

  • Zanini B, Petroboni B, Not T, Pogna N, Lanzini A (2009) A phase II, single blind, cross-over study of acute administration of Triticum monococcum (cultivar Monlis) in patients with coeliac disease. AGA Abstr 140:S–444

  • Zevallos VF, Raker V, Tenzer S, Jimenez-Calvente C, Ashfaq-Khan M, Rüssel N, Pickert G, Schild H, Steinbrink K, Schuppan D (2017) Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152:1100–1113

    CAS  PubMed  Google Scholar 

  • Ziegler JU, Steiner D, Longin CFH, Würschum T, Schweiggert RM, Carle R (2016) Wheat and the irritable bowel syndrome—FODMAP levels of modern and ancient species and their retention during bread making. J Funct Food 25:257–266. https://doi.org/10.1016/j.jff.2016.05.019

    Article  CAS  Google Scholar 

  • Zoccatelli G, Sega M, Bolla M, Cecconi D, Vaccino P, Rizzi C (2012) Expression of α-amylase inhibitors in diploid Triticum species. Food Chem 135:2643–2649

    CAS  PubMed  Google Scholar 

  • Zotta T, Piraino P, Ricciardi A, McSweeney PLH, Paente E (2006) Proteolysis in model sourdough fermentations. J Agric Food Chem 54:2567–2574

    CAS  PubMed  Google Scholar 

  • Zuidmeer L, Goldhahn K, Rona RJ, Gislason D, Madsen C, Summers C, Sodergren E, Dahlstrom J, Lindner T, Sigurdardottir ST, McBride D, Keil T (2008) The prevalence of plant food allergies: a systematic review. J Allergy Clin Immunol 121:1210–1218

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr C.W. Wrigley for his valuable suggestions to improve this overview, Matt Durrant, Berkelo, for bakery trials, Brookvale, NSW 2100, Australia. This work was supported within project OTKA-K 16-119835, funded by the National Research, Development and Innovation Office, Hungary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferenc Békés.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suter, D.A.I., Békés, F. Who is to blame for the increasing prevalence of dietary sensitivity to wheat?. CEREAL RESEARCH COMMUNICATIONS 49, 1–19 (2021). https://doi.org/10.1007/s42976-020-00114-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-020-00114-0

Keywords

Navigation