Skip to main content
Log in

Water-based nanofluid flow with various shapes of Al2O3 nanoparticles owing to MHD inside a permeable tank with heat transfer

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Radiative behavior of nanomaterial with different shapes of nanoparticles within a permeable domain is simulated with an innovative approach. To predict the characteristics of Al2O3–H2O, shape factor impact has been considered. Outputs were extracted for various buoyancy, Hartmann and radiation. Outcomes indicate that domination of conduction mode occurs in existence of magnetic force. Augmenting temperature gradient can be seen for greater Rd. CVFEM has been involved to obtain and discuss impacts of all the governing parameters. The graphical outcomes demosntare that Nuave reduces owing to a significant augmentation in Lorentz term. A converse behavior has been observed due to an augment in Ra and Rd. No-slip case has been considered to generate the numerical and graphical results. The present results show many new behaviors that warrant further study especially non-Newtonian fluid models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alloui Z, Rebhi R, Mamou M, Vasseur P (2017) Effects of quadratic drag on natural convection in a tilted porous layer with uniform heat flux from the side. Int J Heat Mass Transf 115:314–325

    Article  Google Scholar 

  • Babazadeh H, Shah Z, Ullah I, Kumam P, Shafee A (2020) Analyze of hybrid nanofluid behavior within a porous cavity including Lorentz forces and radiation impacts. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09416-1

    Article  Google Scholar 

  • Bagchi A, Kulacki FA (2011) Natural convection in fluid–superposed porous layers heated locally from below. Int J Heat Mass Transf 54(15–16):3672–3682

    Article  Google Scholar 

  • Cai C, Wu X, Liu W, Zhu W, Chen H, Qiu JCD et al (2020) Selective laser melting of near-α titanium alloy Ti-6Al-2Zr-1Mo-1V: Parameter optimization, heat treatment and mechanical performance. J Mater Sci Technol 57:51–64. https://doi.org/10.1016/j.jmst.2020.05.004

    Article  CAS  Google Scholar 

  • Chol SUS, Estman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME-Publ-Fed 231:99–106

    Google Scholar 

  • Chu Y-M, Hajizadeh MR, Li Z, Bach Q-V (2020) Investigation of nano powders influence on melting process within a storage unit. J Mol Liq 318:114321

    Article  CAS  Google Scholar 

  • Chu Y-M, Yadav D, Shafee A, Bach Q-V, Li Z (2020) Influence of wavy enclosure and nanoparticles on heat release rate of PCM considering numerical study. J Mol Liquids 319:114121. https://doi.org/10.1016/j.molliq.2020.114121

    Article  CAS  Google Scholar 

  • Chu Y-M, Salahshoor Z, Shahraki MS, Shafee A, Bach Q-V (2020) Annulus shape tank with convective flow in a porous zone with impose of MHD. Int J Mod Phys C. https://doi.org/10.1142/S0129183120501685

    Article  Google Scholar 

  • Chu Y-M, Abuamdeh NH, BEN-BEYA B, Hajizadeh MR, Li Z, Bach Q-V (2020) Nanoparticle enhanced PCM exergy loss and thermal behavior by means of FVM. J Mol Liq 320(Part B):114457

    Article  CAS  Google Scholar 

  • Deng Y, Zhang T, Clark J, Aminabhavi T, Kruse A, Tsang DCW et al (2020) Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chem: Int J Green Chem Resour GC. https://doi.org/10.1039/D0GC01281E

    Article  Google Scholar 

  • Gibanov NS, Sheremet MA, Oztop HF, Abu-Hamdeh N (2017) Effect of uniform inclined magnetic field on mixed convection in a lid-driven cavity having a horizontal porous layer saturated with a ferrofluid. Int J Heat Mass Transf 114:1086–1097

    Article  CAS  Google Scholar 

  • Guerrero-Martínez FJ, Younger PL, Karimi N, Kyriakis S (2017) Three-dimensional numerical simulations of free convection in a layered porous enclosure. Int J Heat Mass Transf 106:1005–1013

    Article  Google Scholar 

  • Guo C, Hu M, Li Z, Duan F, He L, Zhang Z et al (2020) Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing α-synuclein oligomers. Sens Actuators B Chem 309:127821. https://doi.org/10.1016/j.snb.2020.127821

    Article  CAS  Google Scholar 

  • Guo H, Li X, Zhu Q, Zhang Z, Liu Y, Li Z et al (2020) Imaging nano-defects of metal waveguides using the microwave cavity interference enhancement method. Nanotechnology 31(45):455203. https://doi.org/10.1088/1361-6528/abaa74

    Article  CAS  Google Scholar 

  • Haq RU, Nadeem S, Khan ZH, Noor NFM (2015) Convective heat transfer in MHD slip flow over a stretching surface in the presence of carbon nanotubes. Phys B 457:40–47

    Article  Google Scholar 

  • Hu Y, Li D, Shu S, Niu X (2016) Immersed boundary-lattice Boltzmann simulation of natural convection in a square enclosure with a cylinder covered by porous layer. Int J Heat Mass Transf 92:1166–1170

    Article  Google Scholar 

  • Hu J, Lin J, Zhang Y, Lin Z, Qiao Z, Liu Z et al (2019) A new anti-biofilm strategy of enabling arbitrary surfaces of materials and devices with robust bacterial anti-adhesion via a spraying modified microsphere method. J Mater Chem A Mater Energy Sustain 7(45):26039–26052. https://doi.org/10.1039/c9ta07236e

    Article  CAS  Google Scholar 

  • Khanafer K, Vafai K, Lightstone M (2003) Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf 46(19):3639–3653

    Article  CAS  Google Scholar 

  • Lin J, Hu J, Wang W, Liu K, Zhou C, Liu Z et al (2020) Thermo and light-responsive strategies of smart titanium-containing composite material surface for enhancing bacterially anti-adhesive property. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125783

    Article  Google Scholar 

  • Liu Y, Yang C, Sun Q, Wu S, Lin S et al (2019) Enhanced embedding capacity for the SMSD-based data-hiding method. Signal Process Image Commun 78:216–222. https://doi.org/10.1016/j.image.2019.07.013

    Article  Google Scholar 

  • Liu C, Huang X, Wu Y, Deng X, Liu J, Zheng Z et al (2020) Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol Rev 9(1):155–169. https://doi.org/10.1515/ntrev-2020-0014

    Article  CAS  Google Scholar 

  • Liu J, Wang C, Sun H, Wang H, Rong F, He L et al (2020) CoOx/CoNy nanoparticles encapsulated carbon-nitride nanosheets as an efficiently trifunctional electrocatalyst for overall water splitting and Zn-air battery. Appl Catal B Environ 279:119407. https://doi.org/10.1016/j.apcatb.2020.119407

    Article  CAS  Google Scholar 

  • Ozoe H (2005) Magnetic Convection. Imperial College Press, Singapore

    Book  Google Scholar 

  • Raju CSK, Sandeep N, Malvandi A (2016) Free convective heat and mass transfer of MHD non-Newtonian nanofluids over a cone in the presence of non-uniform heat source/sink. J Mol Liq 221:108–115

    Article  CAS  Google Scholar 

  • Sheikholeslami M (2019) New computational approach for exergy and entropy analysis of nanofluid under the impact of Lorentz force through a porous media. Comput Methods Appl Mech Eng 344:319–333

    Article  Google Scholar 

  • Sheikholeslami M, Farshad SA (2021) Nanoparticle transportation inside a tube with quad-channel tapes involving solar radiation. Powder Technol 378(Part A):145–159

    Article  CAS  Google Scholar 

  • Sheikholeslami M, Jafaryar M, Said Z, Alsabery AI, Babazadeh H, Shafee A (2021) Modification for helical turbulator to augment heat transfer behavior of nanomaterial via numerical approach. Appl Ther Eng 182:115935

    Article  Google Scholar 

  • Shen G, Ma L, Zhang S, Zhang S, An L (2019) Effect of ultrasonic waves on heat transfer in Al2O3 nanofluid under natural convection and pool boiling. Int J Heat Mass Transf 138:516–523

    Article  CAS  Google Scholar 

  • Sobamowo G (2016) Nonlinear vibration analysis of single-walled carbon nanotube conveying fluid in slip boundary conditions using variational iterative method. J Appl Comput Mech 2(4):208–221

    Google Scholar 

  • Tao YB, He YL (2015) Effects of natural convection on latent heat storage performance of salt in a horizontal concentric tube. Appl Energy 143:38–46

    Article  Google Scholar 

  • Wang G, Yao Y, Chen Z, Hu P (2019) Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy 166:256–266. https://doi.org/10.1016/j.energy.2018.10.089

    Article  Google Scholar 

  • Yan H, Xue X, Chen W, Wu X, Dong J, Liu Y et al (2020) Reversible Na+ insertion/extraction in conductive polypyrrole-decorated NaTi2(PO4)3 nanocomposite with outstanding electrochemical property. Appl Surf Sci 530:147295. https://doi.org/10.1016/j.apsusc.2020.147295

    Article  CAS  Google Scholar 

  • Yu H, Dai W, Qian G, Gong X, Zhou D, Li X et al (2020) The NOx degradation performance of nano-TiO2 coating for asphalt pavement. Nanomaterials 10(5):897. https://doi.org/10.3390/nano10050897

    Article  CAS  Google Scholar 

  • Zhang W (2020) Parameter adjustment strategy and experimental development of hydraulic system for wave energy power generation. Symmetry (Basel) 12(5):711. https://doi.org/10.3390/sym12050711

    Article  Google Scholar 

  • Zhang Y, Huang P (2019) Influence of mine shallow roadway on airflow temperature. Arab J Geosci. https://doi.org/10.1007/s12517-019-4934-7

    Article  Google Scholar 

  • Zhao H, Li Y, Song Q, Liu S, Yan J, Wang X et al (2019) Investigation on the physicochemical structure and gasification reactivity of nascent pyrolysis and gasification char prepared in the entrained flow reactor. Fuel 240:126–137. https://doi.org/10.1016/j.fuel.2018.11.145

    Article  CAS  Google Scholar 

  • Zhao H, Li Y, Song Q, Liu S, Ma Q, Ma L et al (2019) Catalytic reforming of volatiles from co-pyrolysis of lignite blended with corn straw over three different structures of iron ores. J Anal Appl Pyrol 144:104714. https://doi.org/10.1016/j.jaap.2019.104714

    Article  CAS  Google Scholar 

  • Zuo H, Salahshoor Z, Yadav D (2020) Mohammed Reza Hajizadeh, Bui Xuan Vuong, Investigation of thermal treatment of Hybrid nanoparticles in a domain with different permeability. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09824-3

    Article  Google Scholar 

Download references

Acknowledgements

Part of current project was supported by the National Natural Science Foundation of China (Grant Nos. 61673169, 1187120, 11971142, 11701176, 11626101, 11601485).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quang-Vu Bach.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, YM., Kumar, R. & Bach, QV. Water-based nanofluid flow with various shapes of Al2O3 nanoparticles owing to MHD inside a permeable tank with heat transfer. Appl Nanosci 13, 2653–2664 (2023). https://doi.org/10.1007/s13204-020-01609-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01609-2

Keywords

Navigation