Skip to main content
Log in

Combined effects of logarithmic and superlinear nonlinearities in fractional Laplacian systems

  • Published:
Analysis and Mathematical Physics Aims and scope Submit manuscript

Abstract

In this paper, we consider the existence and multiplicity of solutions for the following fractional Laplacian system with logarithmic nonlinearity

$$\begin{aligned} {\left\{ \begin{array}{ll} (-\Delta )^{s}u=\lambda h_1(x)u\ln |u|+\frac{p}{p+q}b(x)|v|^{q}|u|^{p-2}u\ \ &{}x\in \Omega , \\ (-\Delta )^t v=\mu h_2(x)v\ln |v|+\frac{q}{p+q}b(x)|u|^p|v|^{q-2}v\ \ &{}x\in \Omega , \\ u=v=0\ \ &{}x\in \mathbb {R}^N{\setminus }\Omega , \end{array}\right. } \end{aligned}$$

where \(s,t\in (0,1),\ N>\max \{2s,2t\}\), \(\lambda ,\mu >0\), \(2<p+q<\min \{\frac{2N}{N-2s},\frac{2N}{N-2t}\}\), \(\Omega \subset \mathbb {R}^N\) is a bounded domain with Lipschitz boundary, \(h_1,h_2,b\in C(\overline{\Omega })\) and \((-\Delta )^{s}\) is the fractional Laplacian. When \(h_1,h_2,b\) are positive functions, the existence of ground state solutions for the problem is obtained. When \(h_1,h_2\) are sign-changing functions and b is a positive function, two nontrivial and nonnegative solutions are obtained. Our results are new even in the case of a single equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

Data sharing not applicable to this paper as no datasets were generated or analyzed during the current study.

References

  1. Ardila, A.H.: Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Anal. 155, 52–64 (2017)

    Article  MathSciNet  Google Scholar 

  2. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  3. Bernini, F., Mugnai, D.: On a logarithmic Hartree equation. Adv. Nonlinear Anal. 9, 850–865 (2019)

    Article  MathSciNet  Google Scholar 

  4. Brown, K.J., Zhang, Y.: The Nehari manifold for a semilinear elliptic problem with a sign changing weight function. J. Differ. Equ. 193, 481–499 (2003)

    Article  Google Scholar 

  5. Bhakta, M., Chakraborty, S., Pucci, P.: Nonhomogeneous systems involving critical or subcritical nonlinearities. Differ. Integral Equ. 33(7–8), 323–336 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Caffarelli, L.: Non-local diffusions, drifts and games, nonlinear partial differential equations. Abel Symposia 7, 37–52 (2012)

    Article  Google Scholar 

  7. Chen, W.J., Deng, S.B.: The Nehari manifold for a fractional \(p\)-Laplacian system involving concave-convex nonlinearities. Nonlinear Anal. RWA 27, 80–92 (2016)

    Article  MathSciNet  Google Scholar 

  8. Chen, S., Tang, X.: Ground state sign-changing solutions for elliptic equations with logarithmic nonlinearity. Act. Math. Hungarica 157, 27–38 (2019)

    Article  MathSciNet  Google Scholar 

  9. Cotsiolis, A., Tavoularis, N.K.: On logarithmic Sobolev inequalities for higher order fractional derivatives. C. R. Acad. Sci. Paris Ser. I 340, 205–208 (2005)

    Article  MathSciNet  Google Scholar 

  10. d ’Avenia, P., Squassina, M., Zenari, M.: Fractional logarithmic Schrödinger equations. Math. Methods Appl. Sci. 38, 5207–5216 (2015)

    Article  MathSciNet  Google Scholar 

  11. Di Nezza, E., Palatucci, G., Valdinaci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  Google Scholar 

  12. Fiscella, A., Pucci, P.: (p, q) systems with critical terms in \(\mathbb{R}^N\). Nonlinear Anal. 177, 454–479 (2018)

    Article  MathSciNet  Google Scholar 

  13. Fiscella, A., Pucci, P., Zhang, B.: p-fractional Hardy–Schrödinger–Kirchhoff systems with critical nonlinearities. Adv. Nonlinear Anal. 8(1), 1111–1131 (2019)

    Article  MathSciNet  Google Scholar 

  14. Fiscella, A., Pucci, P.: Degenerate Kirchhoff (p, q)-fractional systems with critical nonlinearities. Fract. Calc. Appl. Anal. 23(3), 723–752 (2020)

    Article  MathSciNet  Google Scholar 

  15. Fu, Y., Li, H., Pucci, P.: Existence of nonnegative solutions for a class of systems involving fractional (p, q)-Laplacian operators. Chin. Ann. Math. Ser. B 39(2), 357–372 (2018)

    Article  MathSciNet  Google Scholar 

  16. Ji, C., Fang, F., Zhang, B.: A multiplicity result for asymptotically linear Kirchhoff equations. Adv. Nonlinear Anal. 8, 267–277 (2019)

    Article  MathSciNet  Google Scholar 

  17. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  Google Scholar 

  18. Liu, H.L., Liu, Z.S., Xiao, Q.Z.: Ground state solution for a fourth-order nonlinear elliptic problem with logarithmic nonlinearity. Appl. Math. Lett. 79, 176–181 (2018)

    Article  MathSciNet  Google Scholar 

  19. Mingqi, X., Rǎdulescu, V.D., Zhang, B.L.: Nonlocal Kirchhoff problems with singular exponential nonlinearity. Appl. Math. Optim. (2020). https://doi.org/10.1007/s00245-020-09666-3

  20. Mingqi, X., Rǎdulescu, V.D., Zhang, B.L.: Combined effects for fractional Schrǒdinger–Kirchhoff systems with critical nonlinearities. ESAIM COCV 24, 1249–1273 (2018)

    Article  Google Scholar 

  21. Mingqi, X., Rǎdulescu, V.D., Zhang, B.L.: A critical fractional Choquard–Kirchhoff problem with magnetic field. Commun. Contemp. Math. 21, 1850004 (2019)

    Article  MathSciNet  Google Scholar 

  22. Mingqi, X., Rǎdulescu, V.D., Zhang, B.L.: Fractional Kirchhoff problems with critical Trudinger–Moser nonlinearity. Calc. Var. Partial Differ. Equ. 58, 57 (2019)

    Article  MathSciNet  Google Scholar 

  23. Molica Bisci, G., Rădulescu, V.: Ground state solutions of scalar field fractional for Schrödinger equations. Calc. Var. Partial Differ. Equ. 54, 2985–3008 (2015)

    Article  Google Scholar 

  24. Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, vol. 65. Amer. Math. Soc., Providence (1986)

    Book  Google Scholar 

  25. Servadei, R., Valdinoci, E.: The Brezis-Nirenberg result for the fractional Laplacian. Trans. Am. Math. Soc. 367, 67–102 (2015)

    Article  MathSciNet  Google Scholar 

  26. Tian, S.Y.: Multiple solutions for the semilinear elliptic equations with the sign-changing logarithmic nonlinearity. J. Math. Anal. Appl. 454, 816–828 (2017)

    Article  MathSciNet  Google Scholar 

  27. Truong, L.X.: The Nehari manifold for fractional p-Laplacian equation with logarithmic nonlinearity on whole space. Comput. Math. Appl. 78, 3931–3940 (2019)

    Article  MathSciNet  Google Scholar 

  28. Truong, L.X.: The Nehari manifold for The Nehari manifold for a class of Schrödinger equation involving fractional p-Laplacian and sign-changing logarithmic nonlinearity. J. Math. Phys. 60, 111505 (2019)

    Article  MathSciNet  Google Scholar 

  29. Vázquez, J.L.: Nonlinear diffusion with fractional Laplacian operators. In: Nonlinear Partial Differential Equations, Abel Symp., vol.7, 271–298. Springer, Heidelberg (2012)

  30. Wu, T.F.: Multiplicity results for a semi-linear elliptic equation involving sign-changing weight function. Rocky Mt. J. Math. 39, 995–1011 (2009)

    Article  MathSciNet  Google Scholar 

  31. Xiang, M., Zhang, B., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424, 1021–1041 (2015)

    Article  MathSciNet  Google Scholar 

  32. Xiang, M., Zhang, B., Yang, D.: Multiplicity results for variable-order fractional Laplacian equations with variable growth. Nonlinear Anal. 178, 190–204 (2019)

    Article  MathSciNet  Google Scholar 

  33. Xiang, M., Zhang, B., Rǎdulescu, V.D.: Superlinear Schrödinger–Kirchhoff type problems involving the fractional \(p\)-Laplacian and critical exponent. Adv. Nonlinear Anal. 9, 690–709 (2020)

    Article  MathSciNet  Google Scholar 

  34. Xiang, M., Yang, D., Zhang, B.: Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity. Asympt. Anal. https://doi.org/10.3233/ASY-191564

  35. Xiang, M., Hu, D., Yang, D.: Least energy solutions for fractional Kirchhoff problems with logarithmic nonlinearity. Nonlinear Anal. (2020). https://doi.org/10.1016/j.na.2020.111899

Download references

Funding

Mingqi Xiang was supported by the National Nature Science Foundation of China (No. 11601515) and the Tianjin Youth Talent Special Support Program.

Author information

Authors and Affiliations

Authors

Contributions

All three authors contributed equally to this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mingqi Xiang.

Ethics declarations

Conflict of interest

None of the authors has any competing interests in the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Die, H. & Xiang, M. Combined effects of logarithmic and superlinear nonlinearities in fractional Laplacian systems. Anal.Math.Phys. 11, 9 (2021). https://doi.org/10.1007/s13324-020-00441-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13324-020-00441-9

Keywords

Mathematics Subject Classification

Navigation