Skip to main content

Advertisement

Log in

Differentially expressed proteins in the development of protocorm-like bodies of Cattleya tigrina A. Richard

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Cattleya tigrina is an endangered Brazilian native orchid with ornamental potential. Biotechnological tools based on tissue culture techniques are effective for its mass propagation and conservation. Protocorm-like bodies (PLBs) were induced from leaves in culture medium supplemented with plant growth regulators, and generated complete in vitro plants. To deepen on the mechanism underlying this morphogenetic route, this study is aimed to identify and characterize differentially expressed proteins during C. tigrina PLBs development. Leaves were inoculated in in culture medium Murashige and Skoog (MS) supplemented with 9 μM Thidiazuron, and PLBs t were collected after 30, 60 and 100 days in culture. Proteomic analysis performed by two-dimensional electrophoresis and MALDI-TOF mass spectrometry detected 122, 132 and 447 protein after 30, 60 and 100 days, respectively. During PLBs development, 36 proteins were differentially expressed. Proteins related to energy and carbohydrate metabolism, cell proliferation, protein processing, and secondary metabolism and phytohormones were assessed showing their relevance in the process of development of PLBs. Many proteins related to metabolic and energy processes were identified after 60 and 100 days in culture, suggesting their role in which is cell division and differentiation. Enolase was only present after 100 days in culture, thus being a candidate as a molecular marker in this developmental phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abeles BF, Morgan PW, Saltveit ME (1992) Ethylene in plant biology, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Aitken A (2011) Post-translational modification of 14-3-3 isoforms and regulation of cellular function. Semin Cell Dev Biol 22:673–680

    CAS  PubMed  Google Scholar 

  • Andriotis VME, Kruger NJ, Pike MJ, Smith AM (2010) Plastidial glycolysis in developing Arabidopsis embryos. New Phytol 185:649–662

    CAS  PubMed  Google Scholar 

  • Arditti J (2008) Micropropagation of orchids, 2nd edn. Blackwell Publishing Ltd, USA

    Google Scholar 

  • Baba AI, Nogueira FCS, Pinheiro CB, Brasil JN, Jereissati ES, Jucá TL, Soares AA, Santos MF, Domont GB, Campos FAP (2008) Proteome analysis of secondary somatic embryogenesis in cassava (Manihot esculenta). Plant Sci 175:717–723

    CAS  Google Scholar 

  • Barros FD, Vinhos F, Rodrigues, Barberena FFVA, Fraga CN, Pessoa EM, Forster W, Menini NL, Furtado SG, Nardy C, Azevedo CO, Guimarães LRS (2016) Orchidaceae. In: Lista de Espécies da Flora do Brasil. http://floradobrasil.jbrj.gov.br/jabot/FichaPublicaTaxonUC/FichaPublicaTaxonUC.do?id=FB11345. Accessed 10 Jun 2018

  • Batygina TB, Bragina EA, Vasilyeva VE (2003) The reproductive system and germination in orchids. Acta Biol Cracoviensia Ser Bot 45:21–34

    Google Scholar 

  • Bian F, Zheng C, Qu F, Gong X, You C (2009) Proteomic analysis of somatic embryogenesis in Cyclamen persicum Mill. Plant Mol Biol Rep 28:22–31

    Google Scholar 

  • Boer AH, Kleeff PJM, Gao J (2013) Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma 250:425–440

    CAS  PubMed  Google Scholar 

  • Bond U, Schlesinger MJ (1987) Heat-shock proteins and development. Adv Genet 24:1–29

    CAS  PubMed  Google Scholar 

  • Buchner J (1999) Hsp90 and Co—a holding for folding. Trends Biochem Sci 24:136–141

    CAS  PubMed  Google Scholar 

  • Carpentier SC, Witters E, Laukens K, Deckers P, Swennen R, Panis B (2005) Preparation of protein extracts from recalcitrant plant tissues: an evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics 5:2497–2507

    CAS  PubMed  Google Scholar 

  • Chen S, Harmon AC (2006) Advances in plant proteomics. Proteomics 6:5504–5516

    CAS  PubMed  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during SE—recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Corredor-Prado JP, De Conti D, Cangahuala-Inocente GC, Guerra MP, Dal Vesco LL, Pescador R (2016) Proteomic analysis in the induction of nodular cluster cultures in the bromeliad Vriesea reitzii Leme and Costa. Acta Physiol Plant 38:130–140

    Google Scholar 

  • Corredor-Prado JP, De Conti D, Roecker Júnior D, Cangahuala-Inocente GC, Guerra MP, Dal Vesco LL, Pescador R (2018) Proteomic identification of differentially altered proteins during regeneration from nodular cluster cultures in Vriesea reitzii (Bromeliaceae). J Plant Growth Regul. https://doi.org/10.1007/s00344-018-9872-1

    Article  Google Scholar 

  • Correia S, Vinhas R, Manadas B, Lourenço AS, Veríssimo P, Canhoto JM (2012) Comparative proteomic analysis of auxin-induced embryogenic and nonembryogenic tissues of the solanaceous tree Cyphomandra betacea (tamarillo). J Proteome Res 11:1666–1675

    CAS  PubMed  Google Scholar 

  • Cotelle V, Meek SEM, Provan F, Milne FC, Morrice N, MacKintosh C (2000) 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starved Arabidopsis cells. EMBO J 19:2869–2876

    CAS  PubMed  PubMed Central  Google Scholar 

  • De Conti D (2016) Caracterização fisiológica e bioquímica do padrão de desenvolvimento de estruturas semelhantes à protocormos de Cattleya tigrina A. Richard. Thesis, Universidade Federal de Santa Catarina

  • De Conti D, Corredor-Prado JP, Bueno JCF, Cangahuala-Inocente GC, Guerra MP, Pescador R (2014) Análise proteômica durante a morfogênese de estruturas semelhantes à protocormos de Cattleya tigrina A. Richard. In: III Congresso Brasileiro de Recursos Genéticos, Mendes Convention Center, Santos, São Paulo. http://www.cbrg.net.br/cd/Resumos/ResumoCBRG_582.pdf. Cited 03 Jul 2017

  • De Conti D, Corredor-Prado JP, Roecker Júnior D, Suzuki RM, Guerra MP, Pescador R (2018) Determination of endogenous IAA and carbohydrates during the induction and development of protocorm-like bodies of Cattleya tigrina A. Richard. Acta Sci Biol Sci 40:e37874

    Google Scholar 

  • de Silva RC, Carmo LST, Luis ZG, Silva LP, Scherwinski-Pereira JE, Mehtab A (2014) Proteomic identification of differentially expressed proteins during the acquisition of somatic embryogenesis in oil palm (Elaeis guineensis Jacq.). J Proteomics 104:1112–1127

    Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol 54:235–264

    CAS  PubMed  Google Scholar 

  • Díaz MSS, Álvarez CC (2009) Plant regeneration through direct shoot formation from leaf cultures and from protocorm-like bodies derived from callus of Encyclia mariae (Orchidaceae), a threatened Mexican orchid. Vitr Cell Dev Biol Plant 45:162–170

    Google Scholar 

  • Dudits D, Bogre L, Gyorgyey J (1991) Molecular and cellular approaches to the analysis of plant embryo development from somatic cells in vitro. J Cell Sci 99:475–484

    Google Scholar 

  • Efeoğlu B (2009) Heat shock proteins and heat shock response in plants. J Sci 22:67–75

    Google Scholar 

  • Fehér A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult 74:201–228

    Google Scholar 

  • Fortes AM, Santos F, Choi YH, Silva MS, Figueiredo A, Souza L, Pessoa F, Santos BA, Sebastiana M, Palme K, Malhó R, Verpoorte R, Pais MS (2008) Organogenic nodule development in hop (Humulus lupulus L.): transcript and metabolic responses. BMC Genom 9:445–472

    Google Scholar 

  • Fritsche Y (2012) Regeneração de estruturas semelhantes à protocormos e citometria de fluxo aplicadas ao melhoramento genético e ao estudo do genoma nuclear de orquídeas. Dissertation. Universidade Federal de Santa Catarina

  • Gantait S, Sinniah UR, Mandal N, Das PK (2012) Direct induction of protocorm-like bodies from shoot tips, plantlet formation, and clonal fidelity analysis in Anthurium andreanum cv CanCan. Plant Growth Regul 67:257–270

    CAS  Google Scholar 

  • González-Mendoza D (2007) El complejo enzimático citocromo P450 en las plantas. Rev Int Contam Ambient 23:177–183

    Google Scholar 

  • Haccius B (1978) Question of unicellular origin of non-zygotic embryos in callus cultures. Phytomorphology 28:74–81

    Google Scholar 

  • Igarashi D, Ishida S, Fukazawa J, Takahashi Y (2001) 14-3-3 Proteins regulate intracellular localization of the bZIP transcriptional activator RSG. Plant Cell Online 13:2483–2497

    CAS  Google Scholar 

  • Kende H, Zeevaart AD (1997) The five “Classical” plant hormones. Plant Cell Online 9:1197–1210

    CAS  Google Scholar 

  • Kepczyńska E, Zielińska S (2011) Disturbance of ethylene biosynthesis and perception during somatic embryogenesis in Medicago sativa L. reduces embryos’ ability to regenerate. Acta Physiol Plant 33:1969–1980

    Google Scholar 

  • Kępczyński J, Kępczyńska E (2005) Manipulation of ethylene biosynthesis. Acta Physiol Plant 27:213–220

    Google Scholar 

  • Ketelaar T, Allwood EG, Hussey PJ (2007) Actin organization and root hair development are disrupted by ethanol-induced overexpression of Arabidopsis actin interacting protein 1 (AIP1). New Phytol 174:57–62

    CAS  PubMed  Google Scholar 

  • Krochko JE, Abrams GD, Loewen MK, Abrams SR, Cutler AJ (1998) (+)-Abscisic acid 8’-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118:849–860

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liau CH, You SJ, Prasad V, Hsiao HH, Lu JC, Yang NS, Chan MT (2003) Agrobacterium tumefaciens-mediated transformation of an Oncidium orchid. Plant Cell Rep 21:993–998

    CAS  PubMed  Google Scholar 

  • Lippert D, Zhuang J, Ralph S, Ellis DE, Gilbert M, Olafson R, Ritland K, Ellis B, Douglas CJ, Bohlmann J (2005) Proteome analysis of early somatic embryogenesis in Picea glauca. Proteomics 5:461–473

    CAS  PubMed  Google Scholar 

  • Liz RD (2013) Elucidação da morfo-histodiferenciação do desenvolvimento de protocormos e estruturas semelhantes à protocormos (ESPs) de espécies de Cattleya Lindl. Micropropagadas. Dissertation. Universidade Federal de Santa Catarina

  • Lu J, Vahala J, Pappinen A (2011) Involvement of ethylene in somatic embryogenesis in Scots pine (Pinus sylvestris L.). Plant Cell Tissue Organ Cult 107:25–33

    CAS  Google Scholar 

  • Marsoni M, Bracale M, Espen L, Prinsi B, Negri AS, Vannini C (2008) Proteomic analysis of somatic embryogenesis in Vitis vinifera. Plant Cell Rep 27:347–356

    CAS  PubMed  Google Scholar 

  • Ministério do Meio Ambiente—MMA (2013) Instrução Normativa n° 6, de 23 de setembro de 2008. Lista oficial das espécies da flora brasileira ameaçadas de extinção. http://www.mma.gov.br/estruturas/179/_arquivos/179_05122008033615. Accessed 10 Jun 2017

  • Murashige T, Skoog F (1962) Revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 5:473–497

    Google Scholar 

  • Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    CAS  PubMed  Google Scholar 

  • Nogueira FCS, Gonçalves EF, Jereissati ES, Santos M, Costa JH, Oliveira-Neto OB, Soares AA, Domont GB, Campos FAP (2007) Proteome analysis of embryogenic cell suspensions of cowpea (Vigna unguiculata). Plant Cell Rep 26:1333–1343

    CAS  PubMed  Google Scholar 

  • Palama TL, Menard P, Fock I, Choi YH, Bourdon E, Govinden-Soulange J, Bahut M, Payet B, Verpoorte R, Kodja H (2010) Shoot differentiation from protocorm callus cultures of Vanilla planifolia (Orchidaceae): proteomic and metabolic responses at early stage. BMC Plant Biol 10:82

    PubMed  PubMed Central  Google Scholar 

  • Pandey A, Chakraborty S, Datta A, Chakraborty N (2007) Proteomics approach to identify dehydration responsive nuclear proteins from chickpea (Cicer arietinum L.). Mol Cell Proteomics 7:88–107

    PubMed  Google Scholar 

  • Pang Q, Chen S, Dai S, Chen Y, Wang Y, Yan X (2010) Comparative proteomics of salt tolerance in Arabidopsis thaliana and Thellungiella halophila. J Proteome Res 9:2584–2599

    CAS  PubMed  Google Scholar 

  • Park S-Y, Murthy HN, Paek K-Y (2002) Rapid propagation of Phalaenopsis from floral stalk-derived leaves. Vitr Cell Dev Biol Plant 38:168–172

    Google Scholar 

  • Park SY, Murthy HN, Paek KY (2003) Protocorm-like body induction and subsequent plant regeneration from root tip cultures of Doritaenopsis. Plant Sci 164:919–923

    CAS  Google Scholar 

  • Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based Chaperone machinery. Exp Biol Med 228:111–133

    CAS  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    CAS  Google Scholar 

  • Röhl A, Rohrberg J, Buchner J (2013) The chaperone Hsp90: changing partners for demanding clients. Trends Biochem Sci 38:253–262

    PubMed  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    CAS  PubMed  Google Scholar 

  • Schaller G (2012) Ethylene and the regulation of plant development. BMC Biol 10:1–3

    Google Scholar 

  • Sheelavanthmath SS, Murthy HN, Hema BP, Hahn EJ, Paek KY (2005) High frequency of protocorm like bodies (PLBs) induction and plant regeneration from protocorm and leaf sections of Aerides crispum. Sci Hortic (Amsterdam) 106:395–401

    CAS  Google Scholar 

  • Shozo F, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Google Scholar 

  • Sirichandra C, Davanture M, Turk BE, Zivy M, Valot B, Leung J, Merlot S (2010) The Arabidopsis ABA-activated kinase OST1 phosphorylates the bZIP transcription factor ABF3 and creates a 14-3-3 binding site involved in its turnover. PLoS ONE 5:1–13

    Google Scholar 

  • Smalle J, Straeten D (1997) Ethylene and vegetative development. Physiol Plant 100:593–605

    CAS  Google Scholar 

  • Su P-H, Li H-M (2008) Arabidopsis stromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germinating seeds. Plant Physiol 146:1231–1241

    CAS  PubMed  PubMed Central  Google Scholar 

  • Subramaniam G, Taha RM (2003) Morphogenesis of Cymbidium atropurpureum in vitro. Malays J Sci 22:1–5

    Google Scholar 

  • Sunkar R, Chinnusamy V, Zhu J, Zhu JK (2007) Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci 12:301–309

    CAS  PubMed  Google Scholar 

  • Takáč T, Pechan T, Šamaj J (2011) Differential proteomics of plant development. J Proteomics 74:577–588

    PubMed  Google Scholar 

  • Tan BC, Chin CF, Liddell S, Alderson P (2013) Proteomic analysis of callus development in Vanilla planifolia andrews. Plant Mol Biol Report 31:1220–1229

    CAS  Google Scholar 

  • Tokuhara K, Mii M (1993) Micropropagation of Phalaenopsis and Doritaenopsis by culturing shoot tips of flower stalk buds. Plant Cell Rep 13:7–11

    CAS  PubMed  Google Scholar 

  • Tonietto Â, Sato JH, Teixeira JB, Souza EM, Pedrosa FO, Franco OL, Mehta A (2012) Proteomic analysis of developing somatic embryos of Coffea arabica. Plant Mol Biol Report 30:1393–1399

    CAS  Google Scholar 

  • Vabulas RM, Raychaudhuri S, Hayer-hartl M, Hartl FU (2010) Protein folding in the cytoplasm and the heat shock response. Cold Spring Harbor Perspect Biol 2:1–19. https://doi.org/10.1101/cshperspect.a004390

    Article  CAS  Google Scholar 

  • Valadares RBS, Perotto S, Santos EC, Lambais MR (2014) Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination. Mycorrhiza 24:349–360

    CAS  PubMed  Google Scholar 

  • Van der Straeten D, Pousada Ra R, Goodman HM, Van Montagu M (1991) Plant enolase: gene structure, expression, and evolution. Plant Cell 3:719–735

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Fan P, Song H, Chen X, Li X, Li Y (2009) Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. J Proteome Res 8:3331–3345

    CAS  PubMed  Google Scholar 

  • Westermeier R, Naven T (2002) Proteomics in practice: a laboratory manual of proteome analysis. Wiley, Weinheim

    Google Scholar 

  • Winkelmann T, Heintz D, Van Dorsselaer A, Hans-Peter MS (2006) Proteomic analyses of somatic and zygotic embryos of Cyclamen persicum Mill. reveal new insights into seed and germination physiology. Planta 224:508–519

    CAS  PubMed  Google Scholar 

  • Wold F, Ballou CE (1957) Studies on the enzyme enolase. J Biol Chem 227:301–312

    CAS  PubMed  Google Scholar 

  • Yang JF, Piao XC, Sun D, Lian ML (2010) Production of protocorm-like bodies with bioreactor and regeneration in vitro of Oncidium “Sugar Sweet.” Sci Hortic (Amsterdam) 125:712–717

    CAS  Google Scholar 

  • Yoon GM, Kieber JJ (2013) 14-3-3 Regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25:1016–1028

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zörb C, Schmitt S, Mühling KH (2010) Proteomic changes in maize roots after short-term adjustment to saline growth conditions. Proteomics 10:4441–4449

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES-Brasília/Brazil, Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq—Brasília/Brazil and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina—FAPESC—Florianópolis/Brazil (Proc. 2780/2012-4) for fellowship research grants, and financial support. The authors also thank Centro de Biologia Molecular Estrutural da Universidade Federal de Santa Catarina (CEBIME-UFSC) where part of the work was developed. The information present in this work is part of the PhD Thesis of the author Daniela De Conti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniela De Conti.

Additional information

Communicated by S. Abe.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Conti, D., Corredor-Prado, J.P., Bueno, J.C.F. et al. Differentially expressed proteins in the development of protocorm-like bodies of Cattleya tigrina A. Richard. Acta Physiol Plant 42, 181 (2020). https://doi.org/10.1007/s11738-020-03170-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03170-5

Keywords

Navigation