Skip to main content

Advertisement

Log in

Experimental Evaluation of Tensile Properties of Epoxy Composites with Added Cellulose Nanofiber Slurry

  • Published:
Strength of Materials Aims and scope

Cellulose nanofiber (CNF) is one of natural fibers, and its Young modulus and tensile strength have been estimated close to 140 GPa and at least 2–3 GPa, respectively. As the homogeneous dispersion method of CNF in polymer matrix, the chemical modification of the CNF surface or solvent exchange process are often used. However, the environmental load of these processes is large, and the chemically modified CNF is expensive. In this study, mechanically defibrillated CNF reinforced epoxy resin matrix (Epoxy-CNF) composites with various CNF volume fraction were fabricated. Their tensile modulus and ultimate strength of the epoxy composites were deteriorated by the CNF slurry addition, while the fracture elongation was increased. This can be attributed to the interaction of epoxy and water, concentration of microvoids, and CNF agglomeration. Thus, the reduced water content in Epoxy-CNF composites improves their tensile properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. C. Eyholzer, F. Lopez-Suevos, P. Tingaut, et al., “Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose,” Cellulose, 17, 793–802 (2010).

    Article  CAS  Google Scholar 

  2. C. Eyholzer, F. Lopez-Suevos, P. Tingaut, et al., “A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly (ethylene glycol),” Adv. Mater., 27, 2070–2076 (2015).

    Article  Google Scholar 

  3. M. Nogi, S. Iwamoto, A. N. Nakagaito, and H. Yano, “Optically transparent nanofiber paper,” Adv. Mater., 21, 1595–1598 (2009).

    Article  CAS  Google Scholar 

  4. F. El-Hosseiny and D. H. Page, “The mechanical properties of single wood pulp fibres: Theories of strength,” Fibre Sci. Technol., 8, 21–31 (1975).

    Article  Google Scholar 

  5. K. Schulgasser and D. H. Page, “The influence of transverse fibre properties on the in-plane elastic behaviour of paper,” Compos. Sci. Technol., 32, 279–292 (1988).

    Article  CAS  Google Scholar 

  6. , T. Nishino, I. Matsuda, and K. Hirao. “All-cellulose composite,” Macromolecules, 37, 7683–7687 (2004).

    Article  CAS  Google Scholar 

  7. S. S. Nair, P. Kuo, H. Chen, and N. Yan, “Investigating the effect of lignin on the mechanical, thermal, and barrier properties of cellulose nanofibril reinforced epoxy composite,” Ind. Crop. Prod., 100, 208–217 (2017).

    Article  CAS  Google Scholar 

  8. J. Lu, P. Askeland, and L. T. Drzal, “Surface modification of microfibrillated cellulose for epoxy composite applications,” Polymer, 49, 1285–1296 (2008).

    Article  CAS  Google Scholar 

  9. A. Omrani, L. C. Simon, and A. A. Rostami, “Influences of cellulose nanofiber on the epoxy network formation,” Mater. Sci. Eng. A, 490, 131–137 (2008).

    Article  Google Scholar 

  10. L. Tang and C. Weder, “Cellulose whisker/epoxy resin nanocomposites,” ACS Appl. Mater. Interfaces, 2, 1073–1080 (2010).

    Article  CAS  Google Scholar 

  11. M. Shibata and K. Nakai, “Preparation and properties of biocomposites composed of bio-based epoxy resin, tannic acid, and microfibrillated cellulose,” J. Polym. Sci. Part B, 48, 425–433 (2010).

    Article  CAS  Google Scholar 

  12. Y. Zhang, P. Song, S. Fu, and F. Chen, “Morphological structure and mechanical properties of epoxy/polysulfone/cellulose nanofiber ternary nanocomposites,” Compos. Sci. Technol., 115, 66–71 (2015).

    Article  CAS  Google Scholar 

  13. B. Jiang, J. G. Tsavalas, and D. C. Sundberg, “Water whitening of polymer films: Mechanistic studies and comparisons between water and solvent borne films,” Prog. Org. Coat., 105, 56–66 (2017).

    Article  Google Scholar 

  14. Y. Xie, H. Kurita, R. Ishigami, and F. Narita, “Assessing the flexural properties of epoxy composites with extremely low addition of cellulose nanofiber content,” Appl. Sci., 10, 1159 (2020), https://doi.org/10.3390/app10031159.

    Article  CAS  Google Scholar 

  15. R. Ianchis, I. D. Rosca, M. Ghiurea, et al., “Synthesis and properties of new epoxy-organolayered silicate nanocomposites,” Appl. Clay Sci., 103, 28–33 (2015).

    Article  CAS  Google Scholar 

  16. Kusmono, M. W. Wildan, and Z. A. M. Ishak, “Preparation and properties of clay-reinforced epoxy nanocomposites,” Int. J. Polym. Sci., 2013, 690675 (2013), https://doi.org/10.1155/2013/690675.

    Article  CAS  Google Scholar 

  17. A. R. C. Morais, J. V. Pinto, D. Nunes, et al., “Imidazole: prospect solvent for lignocellulosic biomass fractionation and delignification,” ACS Sustainable Chem. Eng., 4, 1643–1652 (2016).

    Article  CAS  Google Scholar 

  18. M. N. Hafiza and M. I. N. Isa, “Correlation between structural, ion transport and ionic conductivity of plasticized 2-hydroxyethyl cellulose based solid biopolymer electrolyte,” J. Membrane Sci., 597, 117176 (2020), https://doi.org/10.1016/j.memsci.2019.117176.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kurita.

Additional information

Translated from Problemy Prochnosti, No. 5, pp. 123 – 130, September – October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurita, H., Ishigami, R., Wu, C. et al. Experimental Evaluation of Tensile Properties of Epoxy Composites with Added Cellulose Nanofiber Slurry. Strength Mater 52, 798–804 (2020). https://doi.org/10.1007/s11223-020-00233-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11223-020-00233-3

Keywords

Navigation