Skip to main content
Log in

The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review

  • Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cyanobacterial blooms are a worldwide problem, especially in freshwaters. As one of the most abundant co-existing organisms of algae, bacteria play critical roles in cyanobacteria growth, particularly the cyanobactericidal bacteria which can efficiently kill cyanobacteria. Recent years, cyanobactericidal bacteria are highly recognized as a method that could potentially block cyanobacterial blooms. Many studies have been conducted to assess their effects on the termination of cyanobacteria blooms and explore their cyanobactericidal mechanisms, e.g., attacking by cell to cell or releasing specific compounds, the physiological, metabolic, and transcriptional disturbance on cyanobacteria. In this review, the present state of research on cyanobactericidal bacteria for the bloom-causing cyanobacteria species is summarized. The challenges in applying cyanobactericidal bacteria in the control of natural cyanobacterial blooms are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahn CY, Joung SH, Jeon JW, Kim HS, Yoon BD, Oh HM (2003) Selective control of cyanobacteria by surfactin-containing culture broth of Bacillus subtilis C1. Biotechnol Lett 25:1137–1142

    Article  CAS  Google Scholar 

  • Bagatini IL, Eiler A, Bertilsson S, Klaveness D, Tessarolli LP, Vieira AAH (2014) Host-specificity and dynamics in bacterial communities associated with bloom-forming freshwater phytoplankton. PLoS ONE 9:0085950

    Article  Google Scholar 

  • Bi X, Dai W, Wang X, Dong S, Zhang S, Zhang D, Shi H (2019) Effects of Bacillus subtilis on the growth, colony maintenance, and attached bacterial community composition of colonial cyanobacteria. Environ Sci Pollut Res Int 26:14977–14987. https://doi.org/10.1007/s11356-019-04902-y

    Article  CAS  PubMed  Google Scholar 

  • Bing-Huo Z, Wei C, Han-Quan L, Jian-Yuan Y, Dai-Ming Z, Yan-Qing D, Hozzein WN, Min X, Rui G, Wen-Jun L (2016) L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074T. Appl Microbiol Biotechnol 100:4627–4636

    Article  Google Scholar 

  • Burnham JC, Collart SA, Highison BW (1981) Entrapment and lysis of the cyanobacterium phormidium luridum by aqueous colonies of Myxococcus xanthus PCO2. Arch Microbiol 129:285–294

    Article  Google Scholar 

  • Chen WM, Sheu FS, Sheu SY (2011) Novel l-amino acid oxidase with algicidal activity against toxic cyanobacterium Microcystis aeruginosa synthesized by a bacterium Aquimarina sp. Enzyme Microb Technol 49:372–379

    Article  CAS  Google Scholar 

  • Choi HJ, Kim BH, Kim JD, Han MS (2005) Streptomyces neyagawaensis as a control for the hazardous biomass of Microcystis aeruginosa (Cyanobacteria) in eutrophic freshwaters. Biol Control 33:335–343

    Article  Google Scholar 

  • Churro C, Fernandes AS, Alverca E, Sam-Bento F, Paulino S, Figueira VC, Bento AJ, Prabhakar S, Lobo AM, Martins LL, Mourato MP, Pereira P (2010) Effects of tryptamine on growth, ultrastructure, and oxidative stress of cyanobacteria and microalgae cultures. Hydrobiologia 649:195–206. https://doi.org/10.1007/s10750-010-0245-4

    Article  CAS  Google Scholar 

  • Demeke A (2016) Cyanobacteria blooms and biological control methods. Int J Fauna Biol Stud 3:32–38

    Google Scholar 

  • Dong L, Qi J, Shao C, Zhong X, Gao D, Cao W, Gao J, Bai R, Long G, Chu C (2016) Concentration and size distribution of total airborne microbes in hazy and foggy weather. Sci Total Environ 541:1011–1018. https://doi.org/10.1016/j.scitotenv.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Zhang L, Yu J, Zhou C, Haffner DG (2015) Water stratification and its relevance to growth of algal community at backwater area in Three Gorges Reservoir. Chin J Environ Eng 9:2265–2271

    Google Scholar 

  • Gerphagnon M, Macarthur DJ, Latour D, Gachon CM, Van Ogtrop F, Gleason FH, Sime-Ngando T (2015) Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism. Environ Microbiol 17:2573–2587. https://doi.org/10.1111/1462-2920.12860

    Article  PubMed  Google Scholar 

  • Gobler CJ (2020) Climate change and harmful algal blooms: insights and perspective. Harmful Algae 91:101731. https://doi.org/10.1016/j.hal.2019.101731

    Article  PubMed  Google Scholar 

  • Gumbo RJ, Ross G, Cloete ET (2008) Biological control of Microcystis dominated harmful algal blooms. Afr J Biotechnol 7:4765–4773

    Google Scholar 

  • Gumbo JR, Ross G, Cloete TE (2010) The isolation and identification of predatory bacteria from a Microcystis algal bloom. Afr J Biotechnol 9:663–671

    Article  CAS  Google Scholar 

  • Guo X, Liu X, Pan J, Yang H (2015) Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa. Sci Rep 5:14720. https://doi.org/10.1038/srep14720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo X, Liu X, Wu L, Pan J, Yang H (2016) The algicidal activity of Aeromonas sp. strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing. Environ Microbiol 18:3867–3883. https://doi.org/10.1111/1462-2920.13346

    Article  CAS  PubMed  Google Scholar 

  • Hajime T, Shigeo T, Hiroyuki N (2006) Effect of nutrient availability on the C, N, and P elemental ratios in the cyanobacterium Microcystis aeruginosa. Limnology 7:185–192

    Article  Google Scholar 

  • Havens KE, Paerl HW (2015) Climate change at a crossroad for control of harmful algal blooms. Environ Sci Technol 49:12605–12606. https://doi.org/10.1021/acs.est.5b03990

    Article  CAS  PubMed  Google Scholar 

  • Hibayashi R, Imamura N (2003) Action mechanism of a selective anti-cyanobacterial compound, argimicin A. J Antibiot 56:154–159. https://doi.org/10.7164/antibiotics.56.154

    Article  CAS  Google Scholar 

  • Hom EFY, Aiyar P, Schaeme D, Mittag M, Sasso S (2015) A chemical perspective on microalgal-microbial interactions. Trends Plant Sci 20:689–693. https://doi.org/10.1016/j.tplants.2015.09.004

    Article  CAS  PubMed  Google Scholar 

  • Huisman J, Codd GA, Paerl HW, Ibelings BW, Verspagen JMH, Visser PM (2018) Cyanobacterial blooms. Nat Rev Microbiol 16:471–483. https://doi.org/10.1038/s41579-018-0040-1

    Article  CAS  PubMed  Google Scholar 

  • Imamura N, Motoike I, Noda M, Adachi K, Konno A, Fukami H (2000) Argimicin A, a novel anti-cyanobacterial compound produced by an algae-lysing bacterium. J Antibiot (Tokyo) 53:1317–1319

    Article  CAS  Google Scholar 

  • Ji X, Verspagen JMH, Van de Waal DB, Rost B, Huisman J (2020) Phenotypic plasticity of carbon fixation stimulates cyanobacterial blooms at elevated CO2. Sci Adv. https://doi.org/10.1126/sciadv.aax2926

    Article  PubMed  PubMed Central  Google Scholar 

  • Jian Chen JC, Chen G, Yang S, Yan H (2010) Control of cyanobacterial bloom with effective microorganisms. Chin J Environ Eng 4:101–104

    Google Scholar 

  • Kodani S, Imoto A, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline) produced by the antialgal bacterium, Pseudomonas sp. K44–1. JAppl Phycol 14:109–114

    Article  CAS  Google Scholar 

  • Li Z, Geng M, Yang H (2015) Algicidal activity of Bacillus sp. Lzh-5 and its algicidal compounds against Microcystis aeruginosa. Appl Microbiol Biotechnol 99:981–990. https://doi.org/10.1007/s00253-014-6043-6

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Lin S, Liu X, Tan J, Pan J, Yang H (2014) A freshwater bacterial strain, Shewanella sp. Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 2, 3-indolinedione. Appl Microbiol Biotechnol 98:4737–4748. https://doi.org/10.1007/s00253-014-5602-1

    Article  CAS  PubMed  Google Scholar 

  • Liming W, Huijun W, Lina C, Shanshan X, Haoyu Z, Rainer B, Xuewen G (2014) Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appl Environ Microbiol 80:7512–7520

    Article  Google Scholar 

  • Lin S, Geng M, Liu X, Tan J, Yang H (2015) On the control of Microcystis aeruginosa and Synechococccus species using an algicidal bacterium, Stenotrophomonas F6, and its algicidal compounds cyclo-(Gly-Pro) and hydroquinone. J Appl Phycol 28:345–355. https://doi.org/10.1007/s10811-015-0549-x

    Article  CAS  Google Scholar 

  • Liting C, Jun Z, Siyi T, Guofei D, Lirong S, Nanqin G (2019) Progress in control of cyanobacteria by microorganism. J Wuhan Univ (Natural ence Edition) 65:401–410

    Google Scholar 

  • Liu JY, Yang CY, Chi YX, Wu DH, Dai XZ, Zhang XH, Igarashi Y, Luo F (2019) Algicidal characterization and mechanism of Bacillus licheniformis Sp34 against Microcystis aeruginosa in Dianchi Lake. J Basic Microb 59:1112–1124. https://doi.org/10.1002/jobm.201900112

    Article  CAS  Google Scholar 

  • Long RA, Qureshi A, Faulkner DJ, Azam F (2003) 2-n-Pentyl-4-quinolinol produced by a marine Alteromonas sp. and its potential ecological and biogeochemical roles. Appl Environ Microbiol 69:568–576. https://doi.org/10.1128/aem.69.1.568-576.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu L, Li G, Shen Y, Liu Y (2009) Isolation, identification and characterization of blue-green algae-lysing strain DC-L14 from Lake Dianchi, China. Chin J Appl Envion Biol 015:106–109

    Google Scholar 

  • Luo JF, Wang Y, Tang SS, Liang JW, Lin WT, Luo LX (2013) Isolation and identification of algicidal compound from Streptomyces and algicidal mechanism to Microcystis aeruginosa. PLoS ONE. https://doi.org/10.1371/journal.pone.0076444

    Article  PubMed  PubMed Central  Google Scholar 

  • Manage PM, Kawabata Z, Nakano S (2000) Algicidal effect of the bacterium Alcaligenes denitrificans on Microcystis spp. Aquat Microb Ecol 22:111–117

    Article  Google Scholar 

  • Maria Grilli C, Stefania P (1984) Lysis of Microcystis aeruginosa (kütz.) by bdellovibrio-like bacteria. J Phycol 20:471–475

    Article  Google Scholar 

  • Meyer N, Bigalke A, Kaulfuss A, Pohnert G (2017) Strategies and ecological roles of algicidal bacteria. FEMS Microbiol Rev 41:880–899. https://doi.org/10.1093/femsre/fux029

    Article  CAS  PubMed  Google Scholar 

  • Mu R, Jia J, Zhang S (2015) Initial investigation on algicidal effect and mechanism of algae-lytic bacteria FS1. J Microbiol 35:16–20

    Google Scholar 

  • Ndlela LL, Oberholster PJ, Van Wyk JH, Cheng PH (2018) Bacteria as biological control agents of freshwater cyanobacteria: is it feasible beyond the laboratory? Appl Microbiol Biotechnol 102:9911–9923. https://doi.org/10.1007/s00253-018-9391-9

    Article  CAS  PubMed  Google Scholar 

  • Nishu SD, Kang Y, Han I, Jung TY, Lee TK (2019) Nutritional status regulates algicidal activity of Aeromonas sp. L23 against cyanobacteria and greenalgae. Plos One 14(3):e0213370

    Article  CAS  Google Scholar 

  • Paerl HW, Otten TG, Kudela R (2018) Mitigating the expansion of narmful algal blooms across the freshwater-to-marine continuum. Environ Sci Technol 52:5519–5529. https://doi.org/10.1021/acs.est.7b05950

    Article  CAS  PubMed  Google Scholar 

  • Qi Wang SP, Liu J, Chi Y, Dai X, Hongxia Du, Zhang X, Yasuo I, Yang C, Luo F (2018) Identification of algicidal bacterium Sp37. Microbiol China 45:2614–2623

    Google Scholar 

  • Qu J, Liu S (2002) The growth of Bacillus sp and Microcystis aeruginosa and their competition for resources. J Zhanjiang Ocean Univ 22(3):13–18

    Google Scholar 

  • Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: Evolution, ecology and emerging applications. Biotechnol Adv 34:14–29. https://doi.org/10.1016/j.biotechadv.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  • Rowe LA, Degtyareva N, Doetsch PW (2008) DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Biol Med 45:1167–1177. https://doi.org/10.1016/j.freeradbiomed.2008.07.018

    Article  CAS  Google Scholar 

  • Ryou H, Nobutaka I (2003) Action mechanism of a selective anti-cyanobacterial compound, argimicin A. J Antibiot 56:154–159

    Article  Google Scholar 

  • Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol 75:955–962. https://doi.org/10.1007/s00253-007-0945-5

    Article  CAS  PubMed  Google Scholar 

  • Segev E, Wyche TP, Kim KH, Petersen J, Ellebrandt C, Vlamakis H, Barteneva N, Paulson JN, Chai L, Clardy J, Kolter R (2016) Dynamic metabolic exchange governs a marine algal-bacterial interaction. Elife. https://doi.org/10.7554/eLife.17473

    Article  PubMed  PubMed Central  Google Scholar 

  • Shao J, Jiang Y, Wang Z, Peng L, Luo S, Gu J, Li R (2014) Interactions between algicidal bacteria and the cyanobacterium Microcystis aeruginosa: lytic characteristics and physiological responses in the cyanobacteria. Int J Environ Sci Technol 11:469–476. https://doi.org/10.1007/s13762-013-0205-4

    Article  CAS  Google Scholar 

  • Shi M, Zou L, Liu XY, Gao Y, Zhang ZK, Wu WZ, Wen DH, Chen ZL, An CC (2006) A novel bacterium Saprospira sp. strain PdY3 forms bundles and lyses cyanobacteria. Front Biosci-Landmrk 11:1916–1923. https://doi.org/10.2741/1934

    Article  CAS  Google Scholar 

  • Shi S, Liu Y, Shen Y, Li G, Li D (2006) Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol Control 39:351

    Article  Google Scholar 

  • Shibata K, Amemiya T, Itoh K (2008) Activities of algicidal bacteria and their influences on microbial communities. Hokkaido University Collection of Scholarly and Academic Papers:71–73

  • Shinya Kodani AI, Mitsutani A, Murakami M (2002) Isolation and identification of the antialgal compound, harmane (1-methyl-β-carboline), produced by the algicidal bacterium, Pseudomonas sp. K44–1. J Appl Phycol 14:109–114

    Article  Google Scholar 

  • Shunyu S, Yongding L, Yinwu S, Genbao L, Dunhai L (2006) Lysis of Aphanizomenon flos-aquae (Cyanobacterium) by a bacterium Bacillus cereus. Biol Control 39:345–351

    Article  Google Scholar 

  • Shi S, Shen Y, Li D, Liu Y (2006) Isolation, identification and algae-lytic characteristic of a bacterium Staphylococcus sp. China Environ Sci 26:77–80

    Google Scholar 

  • Su JF, Ma M, Wei L, Ma F, Lu JS, Shao SC (2016) Algicidal and denitrification characterization of Acinetobacter sp. J25 against Microcystis aeruginosa and microbial community in eutrophic landscape water. Mar Pollut Bull 107:233–239. https://doi.org/10.1016/j.marpolbul.2016.03.066

    Article  CAS  PubMed  Google Scholar 

  • Sun P, Hui C, Bai N, Yang S, Wan L, Zhang Q, Zhao Y (2015) Revealing the characteristics of a novel bioflocculant and its flocculation performance in Microcystis aeruginosa removal. Sci Rep. https://doi.org/10.1038/srep17465

    Article  PubMed  PubMed Central  Google Scholar 

  • Takamura Y, Yamada T, Kimoto A, Kanehama N, Tanaka T, Nakadaira S, Yagi O (2004) Growth inhibition of Microcystis cyanobacteria by L-Lysine and dsappearance of natural Microcystis blooms with spraying. Microb Environ 19:31–39

    Article  Google Scholar 

  • Tian C, Liu X, Tan J, Lin S, Li D, Yang H (2012) Isolation, identification and characterization of an algicidal bacterium from Lake Taihu and preliminary studies on its algicidal compounds. J Environ Sci 24:1823–1831. https://doi.org/10.1016/s1001-0742(11)60983-2

    Article  CAS  Google Scholar 

  • Van Wichelen J, Vanormelingen P, Codd GA, Vyverman W (2016) The common bloom-forming cyanobacterium Microcystis is prone to a wide array of microbial antagonists. Harmful Algae 55:97–111. https://doi.org/10.1016/j.hal.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  • Wang MH, Peng P, Liu YM, Jia RB, Li L (2013) Algicidal activity of a dibenzofuran-degrader Rhodococcus sp. J Microbiol Biotechnol 23:260–266. https://doi.org/10.4014/jmb.1208.08018

    Article  CAS  PubMed  Google Scholar 

  • Wang J, De X, Liu J, Luo G (2014) Study onseparation methods and characteristics of the extracellular algae-lysing components from algae-lysing bacteria. J Mongolia Agric Univ 35:67–71

    Google Scholar 

  • Wang M, Chen S, Zhou W, Yuan W, Wang D (2020) Algal cell lysis by bacteria: a review and comparison to conventional methods. Algal Res. https://doi.org/10.1016/j.algal.2020.101794

    Article  Google Scholar 

  • Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff JF (2009) Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol 11:287–300. https://doi.org/10.1007/s10126-008-9143-4

    Article  CAS  Google Scholar 

  • Wu Y, Liu J, Yang L, Chen H, Zhang S, Zhao H, Zhang N (2011) Allelopathic control of cyanobacterial blooms by periphyton biofilms. Environ Microbiol 13:604–615. https://doi.org/10.1111/j.1462-2920.2010.02363.x

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Wu H, Chen L, Xie S, Zang H, Borriss R, Gao X (2014) Bacilysin from Bacillus amyloliquefaciens FZB42 has specific bactericidal activity against harmful algal bloom species. Appl Environ Microbiol 80:7512–7520. https://doi.org/10.1128/AEM.02605-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiao M, Li M, Reynolds CS (2018) Colony formation in the cyanobacterium Microcystis. Biol Rev 93:1399–1420. https://doi.org/10.1111/brv.12401

    Article  PubMed  Google Scholar 

  • Xu L, Huo M, Sun C, Cui X, Zhou D, Crittenden JC, Yang W (2017) Bioresources inner-recycling between bioflocculation of Microcystis aeruginosa and its reutilization as a substrate for bioflocculant production. Sci Rep 7:43784. https://doi.org/10.1038/srep43784

    Article  PubMed  PubMed Central  Google Scholar 

  • Xuan H, Dai X, Li J, Zhang X, Yang C, Luo F (2017) A Bacillus sp. strain with antagonistic activity against Fusarium graminearum kills Microcystis aeruginosa selectively. Sci Total Environ 583:214–221. https://doi.org/10.1016/j.scitotenv.2017.01.055

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Kobayashi Y, Adachi K, Imamura N (2003) Argimicins B and C, new anti-cyanobacterial compounds produced by Sphingomonas sp. M-17. J Antibiot 56:655–657

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kouchiwa T, Hodoki Y (1998) Distribution and identification of actinomycetes lysing cyanobacteria in a eutrophic lake. J Appl Phycol 10:391–397

    Article  Google Scholar 

  • Yang F, Li X, Li Y, Wei H, Yu G, Yin L (2013) Lysing activity of an indigenous algicidal bacterium Aeromonas sp. against Microcystis spp. isolated from Lake Taihu. Environ Technol 34:1421–1427

    Article  CAS  Google Scholar 

  • Yang K, Chen Q, Zhang D, Zhang H, Lei X, Chen Z, Li Y, Hong Y, Ma X, Zheng W, Tian Y, Zheng T, Xu H (2017) The algicidal mechanism of prodigiosin from Hahella sp. KA22 against Microcystis aeruginosa. Sci Rep 7:7750. https://doi.org/10.1038/s41598-017-08132-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu-Mei L, Ming-Jun C, Meng-Hui W, Rui-Bao J, Li L (2013) Inhibition of Microcystis aeruginosa by the extracellular substances from an Aeromonas sp. J Microbiol Biotechnol 23:1304–1307

    Article  Google Scholar 

  • Yu Y, Zeng YD, Li J, Yang CY, Zhang XH, Luo F, Dai XZ (2019) An algicidal Streptomyces amritsarensis strain against Microcystis aeruginosa strongly inhibits microcystin synthesis simultaneously. Sci Total Environ 650:34–43. https://doi.org/10.1016/j.scitotenv.2018.08.433

    Article  CAS  PubMed  Google Scholar 

  • Yumei L, Li L, Ruibao J (2011) The optimum resource ratio (N:P) for the growth of Microcystis Aeruginosa with abundant nutrients. Proc Environ Sci 10:2134–2140

    Article  Google Scholar 

  • Zhang H, Yu Z, Huang Q, Xiao X, Wang X, Zhang F, Wang X, Liu Y, Hu C (2011) Isolation, identification and characterization of phytoplankton-lytic bacterium CH-22 against Microcystis aeruginosa. Limnologica 41:70–77. https://doi.org/10.1016/j.limno.2010.08.001

    Article  CAS  Google Scholar 

  • Zhang B-H, Ding Z-G, Li H-Q, Mou X-Z, Zhang Y-Q, Yang J-Y, Zhou E-M, Li W-J (2016) Algicidal activity of Streptomyces eurocidicus JXJ-0089 metabolites and their effects on Microcystis physiology. Appl Environ Microbiol 82:5132–5143

    Article  CAS  Google Scholar 

  • Zhang BH, Chen W, Li HQ, Yang JY, Zha DM, Duan YQ, Hozzein WN, Xiao M, Gao R, Li WJ (2016) L-valine, an antialgal amino acid from Streptomyces jiujiangensis JXJ 0074(T). Appl Microbiol Biotechnol 100:4627–4636. https://doi.org/10.1007/s00253-015-7150-8

    Article  CAS  PubMed  Google Scholar 

  • Zhang Ju, Wei K, Li C, Wang Li, Gang Xu, Huang J (2017) Identification and algae-lytic characteristics of endophyte algicidal bacteria ZB 1 strain isolated from wheat Southwest China. J Agric Sci 30:1068–1073

    Google Scholar 

  • Zhang D, Ye Q, Zhang F, Shao X, Fan Y, Zhu X, Li Y, Yao L, Tian Y, Zheng T, Xu H (2019) Flocculating properties and potential of Halobacillus sp. strain H9 for the mitigation of Microcystis aeruginosa blooms. Chemosphere 218:138–146. https://doi.org/10.1016/j.chemosphere.2018.11.082

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Fan X, Peijnenburg WJGM, Zhang M, Qian H (2021) Alteration of dominant cyanobacteria in different bloom periods caused by abiotic factors and species interactions. J Environ Sci 99:1–9

    Article  Google Scholar 

  • Zheng N (2019) A Study of the inhibition of Microcystis aeruginosa by a Comamonadaceae bacteria. Central China Normal University

  • Zuniga C, Li CT, Yu G, Al-Bassam MM, Li T, Jiang L, Zaramela LS, Guarnieri M, Betenbaugh MJ, Zengler K (2019) Environmental stimuli drive a transition from cooperation to competition in synthetic phototrophic communities. Nat Microbiol 4:2184–2191. https://doi.org/10.1038/s41564-019-0567-6

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by Natural Science Foundation Project of CQ CSTC (Grant No: cstc2018jcyjA1150) to Caiyun Yang; National Natural Science Foundation of China (Grant No: 31600095) to Caiyun Yang; Chongqing Research Program of Advanced Technology and Application Foundation (cstc2018jcyjAX0496) to Xianzhu Dai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyun Yang or Feng Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 325 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Hou, X., Wu, D. et al. The characteristics and algicidal mechanisms of cyanobactericidal bacteria, a review. World J Microbiol Biotechnol 36, 188 (2020). https://doi.org/10.1007/s11274-020-02965-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-020-02965-5

Keywords

Navigation