Skip to main content

Advertisement

Log in

A comprehensive review of cooperative MIMO WSN: its challenges and the emerging technologies

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

The distributed nodes of a Wireless Sensor Network (WSN) cooperate among themselves to emulate a virtual multi-antenna system to get similar benefits as the conventional MIMO systems. In WSN, such a system is known as the Cooperative Multiple Input Multiple Output (CMIMO) system. A CMIMO system has an enormous capacity to improve the performance of a WSN. But the increasing demand in the data rate and the desired Quality of Services (QoS), necessitates a revival in the way CMIMO was originally perceived in the early 1990s. Therefore, this article identifies several emerging supportive technologies such as the Compressive Sensing (CS), Simultaneous Wireless Information and Power Transfer (SWIPT), over the air computation, etc. which can be integrated to the CMIMO framework for enhancing the network performance in terms of throughput, delay, Energy Efficiency (EE), etc. The inclusion of these novel ideas necessitates further exploration of CMIMO in WSN along with its associated challenges and their possible solutions. This article provides a comprehensive overview of a CMIMO WSN along with its challenges which have been classified based on the layers of the protocol stack. Since energy efficiency is a key concern in a WSN having scarce energy resources, the energy-saving techniques have been discussed in detail. Further, challenges and open issues have also been highlighted which opens up new research direction in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nguyen, D. N., & Krunz, M. (2013). Cooperative MIMO in wireless networks: Recent developments and challenges. IEEE Network, 27(4), 48–54.

    Google Scholar 

  2. Baraniuk, R. G. (2007). Compressive sensing [lecture notes]. IEEE Signal Processing Magazine, 24(4), 118–121.

    Google Scholar 

  3. Mesleh, R. Y., Haas, H., Sinanovic, S., Ahn, C. W., & Yun, S. (2008). Spatial modulation. IEEE Transactions on Vehicular Technology, 57(4), 2228–2241.

    Google Scholar 

  4. Krikidis, I., Timotheou, S., Nikolaou, S., Zheng, G., Ng, D. W. K., & Schober, R. (2014). Simultaneous wireless information and power transfer in modern communication systems. IEEE Communications Magazine, 52(11), 104–110.

    Google Scholar 

  5. Gao, Z., Dai, L., Han, S., Chih-Lin, I., Wang, Z., & Hanzo, L. (2018). Compressive sensing techniques for next-generation wireless communication. IEEE Wireless Communications, 25(3), 144–153.

    Google Scholar 

  6. Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). Capacity comparison between MIMO–NOMA and MIMO–OMA with multiple users in a cluster. IEEE Journal on Selected Areas in Communications, 35(10), 2413–2424.

    Google Scholar 

  7. Sun, S., Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014). MIMO for millimeter-wave wireless communications: Beamforming, spatial multiplexing, or both? IEEE Communications Magazine, 52(12), 110–121.

    Google Scholar 

  8. Peng, Y., Al-Hazemi, F., Boutaba, R., Tong, F., Hwang, I. S., & Youn, C. H. (2017). Enhancing energy efficiency via cooperative MIMO in wireless sensor networks: State of the art and future research directions. IEEE Communications Magazine, 55(11), 47–53.

    Google Scholar 

  9. Foschini, G. J. (1996). Layered space–time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Google Scholar 

  10. Wolniansky, P.W., Foschini, G.J., Golden, G.D., & Valenzuela, R.A. (1998). V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel. In 1998 URSI international symposium on signals, systems, and electronics. Conference proceedings (pp. 295–300) Cat. No. 98EX167, IEEE.

  11. Stankovic, V., Host-Madsen, A., & Xiong, Z. (2006). Cooperative diversity for wireless ad hoc networks. IEEE Signal Processing Magazine, 23(5), 37–49.

    Google Scholar 

  12. Paulraj, A., Rohit, A. P., Nabar, R., & Gore, D. (2003). Introduction to space–time wireless communications. Cambridge: Cambridge University Press.

    Google Scholar 

  13. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (Vol. 95). Hoboken: Wiley.

    Google Scholar 

  14. Rappaport, T. S. (2002). Wireless communications–principles and practice. Microwave Journal, 45(12), 128–129.

    Google Scholar 

  15. Jafarkhani, H., Yousefi’zadeh, H. & Kazemitabar, J. (2005). Capacity-based connectivity of MIMO fading ad-hoc networks. In GLOBECOM’05. IEEE global telecommunications conference (Vol. 5).

  16. Rajagopalan, R., & Varshney, P. K. (2006). Data aggregation techniques in sensor networks: A survey. IEEE Communications Surveys & Tutorials, 8(4), 48–63.

    Google Scholar 

  17. Incel, O.D. & Krishnamachari, B. (2008). Enhancing the data collection rate of tree-based aggregation in wireless sensor networks. In 2008 5th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (pp. 569–577). IEEE.

  18. Gao, Q., Zuo, Y., Zhang, J., & Peng, X. H. (2010). Improving energy efficiency in a wireless sensor network by combining cooperative MIMO with data aggregation. IEEE Transactions on Vehicular Technology, 59(8), 3956–3965.

    Google Scholar 

  19. Asheer, S., & Kumar, S. (2020). Lifetime enhancement of a WSN through duty cycle in an aggregation based cooperative MIMO framework. Wireless Personal Communications (pp. 1–26).

  20. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behaviour. IEEE Transactions Information Theory, 50(12), 3062–3080.

    MathSciNet  MATH  Google Scholar 

  21. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Google Scholar 

  22. Patel, A., Ram, H., Jagannatham, A. K., & Varshney, P. K. (2017). Robust cooperative spectrum sensing for MIMO cognitive radio networks under CSI uncertainty. IEEE Transactions on Signal Processing, 66(1), 18–33.

    MathSciNet  MATH  Google Scholar 

  23. Naeem, M. K., Patwary, M., & Abdel-Maguid, M. (2017). Universal and dynamic clustering scheme for energy constrained cooperative wireless sensor networks. IEEE Access, 5, 12318–12337.

    Google Scholar 

  24. Chen, K., & Natarajan, B. B. (2016). Evaluating node reliability in cooperative MIMO networks. IEEE Transactions on Information Forensics and Security, 11(7), 1453–1460.

    Google Scholar 

  25. Chen, K., & Natarajan, B. (2014). Mimo-based secret key generation strategies: Rate analysis. International Journal of Mobile Computing and Multimedia Communications, 6(3), 22–55.

    Google Scholar 

  26. Gembali, S.K. & Jagannatham, A.K. (2015). Optimal MIMO beamforming based topology management for interference minimization in MIMO wireless sensor networks. In IEEE wireless communications and networking conference (WCNC) (pp. 1470–1475).

  27. Wu, J., Lin, D., Li, G., Liu, Y., & Yin, Y. (2019). Distributed link scheduling algorithm based on successive interference cancellation in MIMO wireless networks. Wireless Communications and Mobile Computing.

  28. Zeng, M., Yadav, A., Dobre, O. A., Tsiropoulos, G. I., & Poor, H. V. (2017). On the sum rate of MIMO–NOMA and MIMO–OMA systems. IEEE Wireless Communications Letters, 6(4), 534–537.

    Google Scholar 

  29. Wang, J., Zhu, H., Gomes, N. J., & Wang, J. (2018). Frequency reuse of beam allocation for multiuser massive MIMO systems. IEEE Transactions on Wireless Communications, 17(4), 2346–2359.

    Google Scholar 

  30. Dey, I., Butt, M. M., & Marchetti, N. (2018). Throughput analysis for virtual MIMO WSNs over measured MIMO channels. IEEE Transactions on Instrumentation and Measurement, 68(1), 297–299.

    Google Scholar 

  31. Jakllari, G., Krishnamurthy, S. V., Faloutsos, M., Krishnamurthy, P. V., & Ercetin, O. (2007). A cross-layer framework for exploiting virtual MISO links in mobile ad hoc networks. IEEE Transactions on Mobile Computing, 6(6), 579–594.

    Google Scholar 

  32. Lin, J., & Weitnauer, M. A. (2018). Range extension cooperative MAC to attack energy hole in duty-cycled multi-hop WSNs. Wireless Networks, 24(5), 1419–1437.

    Google Scholar 

  33. Lin, J., Jung, H., Chang, Y. J., Jung, J. W., & Weitnauer, M. A. (2015). On cooperative transmission range extension in multi-hop wireless ad-hoc and sensor networks: A review. Ad Hoc Networks, 29, 117–134.

    Google Scholar 

  34. Peng, Y., Al-Hazemi, F., Kim, H., & Youn, C. H. (2016). Design and optimization for energy-efficient cooperative MIMO transmission in ad hoc networks. IEEE Transactions on Vehicular Technology, 66(1), 710–719.

    Google Scholar 

  35. Peng, Y., Li, J., Park, S., Zhu, K., Hassan, M. M., & Alsanad, A. (2019). Energy-efficient cooperative transmission for intelligent transportation systems. Future Generation Computer Systems, 94, 634–640.

    Google Scholar 

  36. Jin, X., Yang, L., Jin, N., & Chen, D. (2019). Performance analysis of a wireless energy-harvesting cooperative system with precoding spatial modulation. IET Communications, 13(15), 2369–2374.

    Google Scholar 

  37. Pehlke, D. R., & Walsh, K. (2017). LTE-advanced pro RF front-end implementations to meet emerging carrier aggregation and DL MIMO requirements. IEEE Communications Magazine, 55(4), 134–141.

    Google Scholar 

  38. Rafique, Z., Seet, B. C., & Al-Anbuky, A. (2013). Performance analysis of cooperative virtual MIMO systems for wireless sensor networks. Sensors, 13(6), 7033–7052.

    Google Scholar 

  39. Di Renzo, M., Haas, H., Ghrayeb, A., Sugiura, S., & Hanzo, L. (2013). Spatial modulation for generalized MIMO: Challenges, opportunities, and implementation. Proceedings of the IEEE, 102(1), 56–103.

    Google Scholar 

  40. Feng, Z., & Wassell, I. (2016). Dynamic power control and optimization scheme for QoS-constrained cooperative wireless sensor networks. In 2016 IEEE international conference on communications (ICC) (pp. 1–6).

  41. Li, S., Da Xu, L., & Wang, X. (2012). Compressed sensing signal and data acquisition in wireless sensor networks and internet of things. IEEE Transactions on Industrial Informatics, 9(4), 2177–2186.

    Google Scholar 

  42. Peng, Y., & Youn, C. H. (2015). An energy-efficient cooperative MIMO transmission with data compression in wireless sensor networks. IEEJ Transactions on Electrical and Electronic Engineering, 10(6), 729–730.

    Google Scholar 

  43. Kafetzoglou, S., & Papavassiliou, S. (2011). Energy-efficient framework for data gathering in wireless sensor networks via the combination of sleeping MAC and data aggregation strategies. International Journal of Sensor Networks, 10(1–2), 3–13.

    Google Scholar 

  44. Liu, G., Huang, L., Xu, H., Xu, X., & Wang, Y. (2013). Energy–efficient tree-based cooperative data aggregation for wireless sensor networks. International Journal of Sensor Networks, 13(2), 65–75.

    Google Scholar 

  45. Gong, D., Zhao, M., & Yang, Y. (2014). A multi-channel cooperative MIMO MAC protocol for clustered wireless sensor networks. Journal of Parallel and Distributed Computing, 74(11), 3098–3114.

    Google Scholar 

  46. Ye, W., Heidemann, J., & Estrin, D. (2002). An energy-efficient MAC protocol for wireless sensor networks. In Proceedings. twenty-first annual joint conference of the IEEE computer and communications societies (Vol. 3, pp. 1567–1576).

  47. Lin, J., & Weitnauer, M. A. (2018). Range extension cooperative MAC to attack energy hole in duty-cycled multi-hop WSNs. Wireless Networks, 24(5), 1419-1437.

  48. Peron, G., Brante, G., Souza, R. D., & Pellenz, M. E. (2018). Physical and MAC cross-layer analysis of energy-efficient cooperative MIMO networks. IEEE Transactions on Communications, 66(5), 1940–1954.

    Google Scholar 

  49. Liu, W., Li, X., & Chen, M. (2005). Energy efficiency of MIMO transmissions in wireless sensor networks with diversity and multiplexing gains. In Proceedings.(ICASSP’05). IEEE international conference on acoustics, speech, and signal processing (Vol. 4, pp. iv–897).

  50. Cui, S., Goldsmith, A. J., & Bahai, A. (2004). Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks. IEEE Journal on Selected Areas in Communications, 22(6), 1089–1098.

    Google Scholar 

  51. Ayatollahi, H., Tapparello, C., & Heinzelman, W. (2019). MAC-LEAP: Multi-antenna, cross layer, energy adaptive protocol. Ad Hoc Networks, 83, 91–110.

    Google Scholar 

  52. Chung, J. M., Kim, J., & Han, D. (2012). Multihop hybrid virtual MIMO scheme for wireless sensor networks. IEEE Transactions on Vehicular Technology, 61(9), 4069–4078.

    Google Scholar 

  53. Molisch, A. F., Win, M. Z., Choi, Y. S., & Winters, J. H. (2005). Capacity of MIMO systems with antenna selection. IEEE Transactions on Wireless Communications, 4(4), 1759–1772.

    Google Scholar 

  54. Choi, Y.S., Molisch, A.F., Win, M.Z., & Winters, J.H. (2003). Fast algorithms for antenna selection in MIMO systems. In 2003 IEEE 58th vehicular technology conference (Vol. 3, pp. 1733–1737).

  55. Sandhu, S., Nabar, R.U., Gore, D.A., & Paulraj, A. (2000). Near-optimal selection of transmit antennas for a MIMO channel based on Shannon capacity. In Conference record of the thirty-fourth asilomar conference on signals, systems and computers (Vol. 1, pp. 567–571).

  56. Zhou, Z., Zhou, S., Cui, S., & Cui, J. H. (2008). Energy-efficient cooperative communication in a clustered wireless sensor network. IEEE Transactions on Vehicular Technology, 57(6), 3618–3628.

    Google Scholar 

  57. Alam, M. Z., Adhicandra, I., & Jamalipour, A. (2019). Optimal best path selection algorithm for cluster-based multi-hop MIMO cooperative transmission for vehicular communications. IEEE Transactions on Vehicular Technology, 68(9), 8314–8321.

    Google Scholar 

  58. Gao, Y., Kang, G., & Cheng, J. (2019). An opportunistic cooperative packet transmission scheme in wireless multi-hop networks. Sensors, 19(21), 4821.

    Google Scholar 

  59. Le, T. A., & Kong, H. Y. (2020). Energy harvesting relay-antenna selection in cooperative MIMO/NOMA network over Rayleigh fading. Wireless Networks, 26(3), 2075–2087.

    Google Scholar 

  60. Wang, X., Nan, Z., & Chen, T. (2015). Optimal MIMO broadcasting for energy harvesting transmitter with non-ideal circuit power consumption. IEEE Transactions on Wireless Communications, 14(5), 2500–2512.

    Google Scholar 

  61. Bannour, A., Sacchi, C., & Sun, Y. (2017). MIMO-OFDM based energy harvesting cooperative communications using coalitional game algorithm. IEEE Transactions on Vehicular Technology, 66(12), 11166–11179.

    Google Scholar 

  62. Zhang, R., & Ho, C. K. (2013). MIMO broadcasting for simultaneous wireless information and power transfer. IEEE Transactions on Wireless Communications, 12(5), 1989–2001.

    Google Scholar 

  63. Varshney, L.R. (2008). Transporting information and energy simultaneously. In 2008 IEEE international symposium on information theory (pp. 1612–1616).

  64. Grover, P., & Sahai, A. (2010). Shannon meets Tesla: Wireless information and power transfer. In 2010 IEEE international symposium on information theory (pp. 2363–2367).

  65. Jadidian, J., & Katabi, D. (2014). Magnetic MIMO: How to charge your phone in your pocket. In Proceedings of the 20th annual international conference on Mobile computing and networking (pp. 495–506).

  66. He, C., Sheng, B., Zhu, P., & You, X. (2012). Energy efficiency and spectral efficiency trade off in downlink distributed antenna systems. IEEE Wireless Communications Letters, 1(3), 153–156.

    Google Scholar 

  67. Hong, X., Wang, J., Wang, C. X., & Shi, J. (2014). Cognitive radio in 5G: A perspective on energy-spectral efficiency trade-off. IEEE Communications Magazine, 52(7), 46–53.

    Google Scholar 

  68. Mahapatra, R., Nijsure, Y., Kaddoum, G., Hassan, N. U., & Yuen, C. (2015). Energy efficiency tradeoff mechanism towards wireless green communication: A survey. IEEE Communications Surveys & Tutorials, 18(1), 686–705.

    Google Scholar 

  69. Huang, J., & Swindlehurst, A. L. (2011). Cooperative jamming for secure communications in MIMO relay networks. IEEE Transactions on Signal Processing, 59(10), 4871–4884.

    MathSciNet  MATH  Google Scholar 

  70. Zhang, H., Xing, H., Cheng, J., Nallanathan, A., & Leung, V. C. (2015). Secure resource allocation for OFDMA two-way relay wireless sensor networks without and with cooperative jamming. IEEE Transactions on Industrial Informatics, 12(5), 1714–1725.

    Google Scholar 

  71. Hong, L., McNeal, M., & Chen, W. (2011). Secure cooperative MIMO communications under active compromised nodes. In 2011 IEEE international conference on pervasive computing and communications workshops PERCOM workshops (pp. 184–189).

  72. Kim, T. K., Choi, W., & Im, G. H. (2016). Efficient codebook design for co-operative MIMO systems with decode-and-forward relay. IEEE Communications Letters, 20(3), 598–601.

    Google Scholar 

  73. Li, B., Yang, J., Yang, H., Liu, G., Ma, R., & Peng, X. (2019). Decode-and-forward cooperative transmission in wireless sensor networks based on physical-layer network coding. Wireless Networks, 6, 1–7.

    Google Scholar 

  74. Oggier, F., & Hassibi, B. (2011). The secrecy capacity of the MIMO wiretap channel. IEEE Transactions on Information Theory, 57(8), 4961–4972.

    MathSciNet  MATH  Google Scholar 

  75. Huang, S., Zhu, L., & Liu, S. (2018). Based on virtual beamforming cooperative jamming with Stackelberg game for physical layer security in the heterogeneous wireless network. EURASIP Journal on Wireless Communications and Networking, 2018(1), 1–11.

    Google Scholar 

  76. Zhu, F., Gao, F., Lin, H., Jin, S., Zhao, J., & Qian, G. (2018). Robust beamforming for physical layer security in BDMA massive MIMO. IEEE Journal on Selected Areas in Communications, 36(4), 775–787.

    Google Scholar 

  77. Zhao, R., Lin, H., He, Y. C., Chen, D. H., Huang, Y., & Yang, L. (2017). Secrecy performance of transmit antenna selection for MIMO relay systems with outdated CSI. IEEE Transactions on Communications, 66(2), 546–559.

    Google Scholar 

  78. He, D., Liu, C., Quek, T. Q., & Wang, H. (2018). Transmit antenna selection in MIMO wiretap channels: A machine learning approach. IEEE Wireless Communications Letters, 7(4), 634–637.

    Google Scholar 

  79. Zhu, J., Zou, Y., Wang, G., Yao, Y. D., & Karagiannidis, G. K. (2015). On secrecy performance of antenna-selection-aided MIMO systems against eavesdropping. IEEE Transactions on Vehicular Technology, 65(1), 214–225.

    Google Scholar 

  80. Timilsina, S., & Amarasuriya, G. (2017). Secure communication in relay-assisted massive MIMO downlink. In: IEEE global communications conference (pp. 1–7).

  81. Chen, W., Hong, L., Shetty, S., Lo, D., & Cooper, R. (2016). Cross-layered security approach with compromised nodes detection in cooperative sensor networks. In 2016 ieee international parallel and distributed processing symposium workshops (IPDPSW) (pp. 499–508). IEEE.

  82. Hong, L., & Chen, W. (2014). Information theory and cryptography based secured communication scheme for cooperative MIMO communication in wireless sensor networks. Ad Hoc Networks, 14, 95–105.

    Google Scholar 

  83. Bocherer, G., & Mathar, R. (2010). On the throughput/bit-cost tradeoff in CSMA based cooperative networks. In Proceedings of the 2010 international ITG conference on source and channel coding.

  84. Chen, Y., Yu, G., Qiu, P., & Zhang, Z. (2006). Power-aware cooperative relay selection strategiesin wireless ad hoc networks. In Proceedings of the IEEE 17th international symposium on personal, indoor and mobile radio communications.

  85. Gharavi, H., Hu, B., & Wu. N. (2010). A design framework for high-density wireless ad-hoc networks achieving cooperative diversity. In Proceedings of the 2010 IEEE International Conference on Communications (ICC).

  86. Sinha, A. & Pandey, A.K., (2017). An energy-efficient MAC protocol for virtual MIMO communications in WSNs. In 2017 international conference on wireless communications, signal processing and networking (WiSPNET) (pp. 1419–1423).

  87. Yang, H., Shen, H.Y., Sikdar, B., & Kalyanaraman, S. (2009). A threshold based MAC protocol for cooperative MIMO transmissions. (pp. 2996–3000).

  88. Sami, M., Noordin, N. K., Khabazian, M., Hashim, F., & Subramaniam, S. (2016). A survey and taxonomy on medium access control strategies for cooperative communication in wireless networks: Research issues and challenges. IEEE Communications Surveys & Tutorials, 18(4), 2493–2521.

    Google Scholar 

  89. Sadeghi, R., Barraca, J. P., & Aguiar, R. L. (2017). A survey on cooperative MAC protocols in IEEE 802.11 wireless networks. Wireless Personal Communications, 95(2), 1469–1493.

    Google Scholar 

  90. Akande, D. O., Salleh, M. F. M., & Ojo, F. K. (2018). MAC protocol for cooperative networks, design challenges, and implementations: A survey. Telecommunication Systems, 69(1), 95–111.

    Google Scholar 

  91. Khan, R. A. M., & Karl, H. (2013). MAC protocols for cooperative diversity in wireless LANs and wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(1), 46–63.

    Google Scholar 

  92. Xu, H., Huang, L., Qiao, C., Dai, W., & Sun, Y. E. (2014). Joint virtual MIMO and data gathering for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(4), 1034–1048.

    Google Scholar 

  93. Li, X., Tao, X., & Li, N. (2016). Energy-efficient cooperative MIMO-based random walk routing for wireless sensor networks. IEEE Communications Letters, 20(11), 2280–2283.

    Google Scholar 

  94. Zhang, J., Zhang, D., Xie, K., Qiao, H., & He, S. (2017). A VMIMO-based cooperative routing algorithm for maximizing network lifetime. China Communications, 14(4), 20–34.

    Google Scholar 

  95. Sun, W., Huang, L., Zhang, H., & Xu, H. (2016). Energy-aware virtual multi-input-multi-output-based routing for wireless ad hoc networks. Wireless Communications and Mobile Computing, 16(7), 810–824.

    Google Scholar 

  96. Chen, W., Yuan, Y., et al. (2005). Virtual MIMO protocol based on clustering for wireless sensor network. In Proceedings 10th IEEE international symposium computers and communications (pp. 335–340) Murcia, Spain.

  97. Xiong, Z., Chen, W., & Cao, W. (2011). An energy-efficient clusterbased cooperative MIMO scheme using network coding. In 7th international conference on wireless communications, networking and mobile computing (WiCOM) (pp. 1–5) IEEE, Wuhan, China.

  98. Maranhao, J.P., da Costa, J.P., de Freitas, E.P., Marinho, M.A., & Del Galdo, G. (2016). Multi-hop cooperative XIXO transmission scheme for delay tolerant wireless sensor networks. In WSA 2016; 20th International ITG Workshop on Smart Antennas (pp. 1–5).

  99. Li, S., He, C., Wang, Y., Zhang, Y., Liu, J., & Huang, T. (2017). A novel joint power and feedback bit allocation interference alignment scheme for wireless sensor networks. Sensors, 17(3), 563.

    Google Scholar 

  100. Rajeswari, K., & Bhagyaveni, M. A. (2017). MAP based V-BLAST transmission to improve network lifetime in virtual MIMO based wireless sensor networks. National Academy Science Letters, 40(6), 409–414.

    Google Scholar 

  101. Stewart, R., Xie, Q., Sharp, C., Schwarzbauer, H., Taylor, T., Rytina, I., Kalla, M., Zhang, L., & Paxson, V. (2000). Stream control transmission protocol. In: RFC - 2960.

  102. Madan, R., Cui, S., Lall, S., & Goldsmith, N. A. (2006). Cross-layer design for lifetime maximization in interference-limited wireless sensor networks. IEEE Transactions on Wireless Communications, 5(11), 3142–3152.

    Google Scholar 

  103. Lin, Z., Li, G., & Li, J. (2020). Cross-layer energy optimization in cooperative MISO wireless sensor networks. Computer Communications, 157, 351.

    Google Scholar 

  104. Wu, Q., Zhou, X., & Ge, F. (2017). A cross-layer protocol for exploiting cooperative diversity in multi-hop wireless ad hoc networks. Wireless Networks, 23(5), 1591–1610.

    Google Scholar 

  105. Xu, W. Y., Wang, H., & Yu, X. B. (2018). Performance analysis of cross layer design with imperfect channel information in distributed antenna systems. Annals of Telecommunications, 73(9–10), 651–664.

    Google Scholar 

  106. Liu, J. S., (2012). Energy-efficient cross-layer design of cooperative MIMO multi-hop wireless sensor networks using column generation. Wireless Personal Communications, 66(1), 185–205.

    Google Scholar 

  107. Abari, O., Rahul, H., & Katabi, D. (2016). Over-the-air function computation in sensor networks. arXiv preprint arXiv:1612.02307.

  108. Som, P., Datta, T., Srinidhi, N., Chockalingam, A., & Rajan, B. S. (2011). Low-complexity detection in large-dimension MIMO-ISI channels using graphical models. IEEE Journal of Selected Topics in Signal Processing, 5(8), 1497–1511.

    Google Scholar 

  109. Zhang, Y. Y., Zhang, J. K., & Yu, H. Y. (2018). Physically securing energy-based massive MIMO MAC via joint alignment of multi-user constellations and artificial noise. IEEE Journal on Selected Areas in Communications, 36(4), 829–844.

    Google Scholar 

  110. Sundaresan, K., Sivakumar, R., Ingram, M.A., & Chang, T.Y. (2004). A fair medium access control protocol for ad-hoc networks with MIMO links. In IEEE INFOCOM (Vol. 4, pp. 2559–2570).

  111. Ha, T., Kim, J., & Chung, J. (2018). HE-MAC: Harvest-then-transmit based modified EDCF MAC protocol for wireless powered sensor networks. IEEE Transactions on Wireless Communications, 17(1), 3–16.

    Google Scholar 

  112. Liu, L., Hua, C., Chen, C., & Guan, X. (2014). Power allocation for virtual MIMO-based three-stage relaying in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 13(12), 6528–6541.

    Google Scholar 

  113. Eskandari, M., Doost-Hoseini, A. M., Jung, J., & Lee, I. (2018). Antenna selection and power allocation for energy efficient MIMO systems. Journal of Communications and Networks, 20(6), 546–553.

    Google Scholar 

  114. Wen, D., Zhu, G., & Huang, K. (2019). Reduced-dimension design of MIMO over-the-air computing for data aggregation in clustered IoT networks. IEEE Transactions on Wireless Communications, 18(11), 5255–5268.

    Google Scholar 

  115. Zhu, G., & Huang, K. (2018). MIMO over-the-air computation for high-mobility multimodal sensing. IEEE Internet of Things Journal, 6(4), 6089–6103.

    Google Scholar 

  116. Liu, X. Y., Zhu, Y., Kong, L., Liu, C., Gu, Y., Vasilakos, A. V., et al. (2014). CDC: Compressive data collection for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 26(8), 2188–2197.

    Google Scholar 

  117. Zou, Z., Bao, Y., Li, H., Spencer, B. F., & Ou, J. (2014). Embedding compressive sensing-based data loss recovery algorithm into wireless smart sensors for structural health monitoring. IEEE Sensors Journal, 15(2), 797–808.

    Google Scholar 

  118. Zhang, P., & Wang, J. (2019). On enhancing network dynamic adaptability for compressive sensing in WSNs. IEEE Transactions on Communications, 67(12), 8450–8459.

    Google Scholar 

  119. Eltayeb, M. E., Al-Naffouri, T. Y., & Bahrami, H. R. (2014). Compressive sensing for feedback reduction in MIMO broadcast channels. IEEE Transactions on Communications, 62(9), 3209–3222.

    Google Scholar 

  120. Shen, J. C., Zhang, J., Alsusa, E., & Letaief, K. B. (2016). Compressed CSI acquisition in FDD massive MIMO: How much training is needed? IEEE Transactions on Wireless Communications, 15(6), 4145–4156.

    Google Scholar 

  121. Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2017). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302.

    Google Scholar 

  122. Song, C., Park, J., Clerckx, B., Lee, I., & Lee, K. J. (2016). Generalized precoder designs based on weighted MMSE criterion for energy harvesting constrained MIMO and multi-user MIMO channels. IEEE Transactions on Wireless Communications, 15(12), 7941–7954.

    Google Scholar 

  123. Rubio, J., & Pascual-Iserte, A. (2019). User grouping and resource allocation in multiuser MIMO systems under SWIPT. EURASIP Journal on Wireless Communications and Networking, 1, 164.

    Google Scholar 

  124. Ge, W., Zhu, Z., Hao, W., Wang, Y., Wang, Z., Wu, Q., et al. (2019). AN-Aided Secure Beamforming in Power-Splitting-Enabled SWIPT MIMO Heterogeneous Wireless Sensor Networks. Electronics, 8(4), 459.

    Google Scholar 

  125. Lu, Y., Xiong, K., Fan, P., Ding, Z., Zhong, Z., & Letaief, K. B. (2018). Global energy efficiency in secure MISO SWIPT systems with non-linear power-splitting EH model. IEEE Journal on Selected Areas in Communications, 37(1), 216–232.

    Google Scholar 

  126. Zhu, Z., Chu, Z., Wang, N., Wang, Z., & Lee, I. (2018). Energy harvesting fairness in AN-aided secure MU-MIMO SWIPT systems with cooperative jammer. In 2018 IEEE international conference on communications (ICC) (pp. 1–6).

  127. Liu, Y., Pan, G., Zhang, H., & Song, M. (2016). On the capacity comparison between MIMO–NOMA and MIMO–OMA. IEEE Access, 4, 2123–2129.

    Google Scholar 

  128. Ding, Z., Adachi, F., & Poor, H. V. (2015). The application of MIMO to non-orthogonal multiple access. IEEE Transactions on Wireless Communications, 15(1), 537–552.

    Google Scholar 

  129. Ding, Z., Schober, R., & Poor, H. V. (2016). A general MIMO framework for NOMA downlink and uplink transmission based on signal alignment. IEEE Transactions on Wireless Communications, 15(6), 4438–4454.

    Google Scholar 

  130. Yang, P., Xiao, Y., Xiao, M., & Ma, Z. (2019). NOMA-aided precoded spatial modulation for downlink MIMO transmissions. IEEE Journal of Selected Topics in Signal Processing, 13(3), 729–738.

    Google Scholar 

  131. Renzo, M.D., Haas, H., Ghrayeb, A., Hanzo, L., & Sugiura, S. (1999). Spatial modulation for multiple-antenna communication. In: Wiley encyclopedia of electrical and electronics engineering (pp. 1–12).

  132. Peng, Y., & Youn, C. H. (2015). Lifetime and energy optimization in multi-hop wireless sensor networks with spatial modulation based cooperative MIMO. IEEJ Transactions on Electrical and Electronic Engineering, 10(6), 731–732.

    Google Scholar 

  133. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive MIMO: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.

    Google Scholar 

  134. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

    Google Scholar 

  135. Samimi, M. K., & Rappaport, T. S. (2016). 3-D millimeter-wave statistical channel model for 5G wireless system design. IEEE Transactions on Microwave Theory and Techniques, 64(7), 2207–2225.

    Google Scholar 

  136. Sun, S., & Rappaport, T.S. (2017). Millimeter wave MIMO channel estimation based on adaptive compressed sensing. In 2017 IEEE international conference on communications workshops (ICC Workshops) (pp. 47–53).

  137. Zhang, H., Dong, A., Jin, S., & Yuan, D. (2017). Joint transceiver and power splitting optimization for multiuser MIMO SWIPT under MSE QoS constraints. IEEE Transactions on Vehicular Technology, 66(8), 7123–7135.

    Google Scholar 

  138. Guo, S., Wang, F., Yang, Y., & Xiao, B. (2015). Energy-efficient cooperative for simultaneous wireless information and power transfer in clustered wireless sensor networks. IEEE Transactions on Communications, 63(11), 4405–4417.

    Google Scholar 

  139. Zhu, Z., Chu, Z., Zhou, F., Niu, H., Wang, Z., & Lee, I. (2017). Secure beamforming designs for secrecy MIMO SWIPT systems. IEEE Wireless Communications Letters, 7(3), 424–427.

    Google Scholar 

  140. Zhu, Z., Ge, W., Wang, N., Wang, Y., Hao, W., Chu, Z., & Wang, Z. (2019). AN-based beamforming design in secrecy heterogeneous WSN with MIMO-SWIPT. In 2019 IEEE international conference on communications workshops (pp. 1–6).

  141. Neelamegam, S., & Mahalingam, M. (2019). Performance analysis of cooperative wireless sensor network with index-based modulation. The Journal of Engineering, 2019(5), 3438–3441.

    Google Scholar 

  142. Yu, X., Li, Q., Pan, Q., Hu, Y., & Du, Y. (2019). Performance analysis for spatial modulation with AF relaying over spatially correlated Rayleigh channels. IEEE Access, 7, 115926–115935.

    Google Scholar 

  143. Hlaing, N. W., Farzamnia, A., Mariappan, M., & Haldar, M. K. (2019). Network coding schemes with efficient LDPC coded MIMO–NOMA in two-way relay networks. IET Communications, 14(2), 337–348.

    Google Scholar 

  144. Tran, D. D., Ha, D. B., So-In, C., Tran, H., Nguyen, T. G., Baig, Z. A., et al. (2018). Performance analysis of DF/AF cooperative MISO wireless sensor networks With NOMA and SWIPT over nakagami-fading. IEEE Access, 6, 56142–56161.

    Google Scholar 

  145. Nguyen, T. G., So-In, C., & Tran, H. (2020). Outage performance analysis of energy harvesting wireless sensor networks for NOMA transmissions. Mobile Networks and Applications, 25(1), 23–41.

    Google Scholar 

  146. Li, Y., & Baduge, G. A. A. (2018). Underlay spectrum-sharing massive MIMO NOMA. IEEE Communications Letters, 23(1), 116–119.

    Google Scholar 

  147. Castanheira, D., Lopes, P., Silva, A., & Gameiro, A. (2017). Hybrid beamforming designs for massive MIMO millimeter-wave heterogeneous systems. IEEE Access, 5, 21806–21817.

    Google Scholar 

  148. Gómez-Cuba, F., & Zorzi, M. (2019). Optimal link scheduling in millimeter wave multi-hop networks with MU-MIMO radios. IEEE Transactions on Wireless Communications, 19, 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Asheer.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asheer, S., Kumar, S. A comprehensive review of cooperative MIMO WSN: its challenges and the emerging technologies. Wireless Netw 27, 1129–1152 (2021). https://doi.org/10.1007/s11276-020-02506-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02506-w

Keywords

Navigation