Skip to main content
Log in

Role of the Morphology of Sulfonic Resin Catalysts in the Etherification of Ethanol with iso-Butylene: A Review

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The influence of the morphology of the sulfonic resins on their catalytic properties for the etherification of ethanol with isobutylene has been analyzed. It is shown that the influence of the morphology is complex, and can be manifested through various factors: the accessibility and energetics of acid sites, the adsorption–desorption dynamics of reagents, and the mass transfer conditions. It has been established that the effect of morphology on the acidity of sulfonic resin is manifested in the difference of the energetics of external and internal acid sites. Regardless of morphology, the stoichiometry of ethanol sorption on sulfonic resins corresponds to 1 molecule per 1 acid site. The volcano-shape temperature dependence of the activity of sulfonic resins for ethanol etherification is due to the thermodynamics of the reaction (high-temperature branch) and the mass transfer characteristics of the catalyst (low-temperature branch). Due to various conditions of the mass transfer, the morphology determines the optimal process temperature and, consequently, the activity of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.

Similar content being viewed by others

References

  1. C. Sloby, “Sulfonic acid resin,” Catalysis from A to Z. A Concise Encyclopedia, W. Herrmann, B. Cornils, H. Zanthoff, and J.-H. Xu (eds.), Wiley-VCH Verlag GmbH & Co. (2020).

  2. R. Soto, C. Fite, E. Ramirez, et al., React. Chem. Eng., 3, 195-205 (2018).

    CAS  Google Scholar 

  3. G. Gelbard, Ind. Eng. Chem. Res., 44, 8468-8498 (2005).

    CAS  Google Scholar 

  4. E. Ramirez, R. Bringue, C. Fite, et al., J. Chem. Technol. Biotechnol., 92, 2775-2786 (2017).

    CAS  Google Scholar 

  5. E. R. Lachter, J. A. Rodrigues, V. G. Teixeira, et al., “Use of ion-exchange resins in alkylation reactions,” Applications of Ion Exchange Materials in Chemical and Food Industries, Inamuddin, T. A. Rangreez, and A. M. Asiri (eds.), Springer, Cham (2019), pp. 35-74.

  6. O. U. Osazuwa and S. Z. Abidin, “The application of ion-exchange resins in hydrogenation reactions,” Applications of Ion Exchange Materials in Chemical and Food Industries, Inamuddin, T. A. Rangreez, and A. M. Asiri (eds.), Springer, Cham (2019), pp. 19-33.

  7. F. Chen, L. Shi, S. Sabo Bello, et al., New J. Chem., 44, 1346-1353 (2020).

    CAS  Google Scholar 

  8. J. Q. Liu and G. Wulff, J. Am. Chem. Soc., 126, 7452-7453 (2004).

  9. I. A. Nicholls, J. Matsui, M. Krook, and K. Mosbach, J. Mol. Recogn., 9, 652-657 (1996).

  10. D. Carboni, K. Flavin, A. Servant, et al., Chemistry, 14, 7059-7065 (2008).

    PubMed  CAS  Google Scholar 

  11. L. Sh. Al-Saadi, V. C. Eze, and A. P. Harvey, Front. Chem., 7, 882 (2020).

  12. K. Tanabe and W. F. Hoelderich, Appl. Catal. A., 181, 399-434 (1999).

    CAS  Google Scholar 

  13. A. Servant, S. Rogers, A. Zarbakhsh, and M. Resmini, New J. Chem., 37, 4103-4109 (2013).

    CAS  Google Scholar 

  14. M. Kuzminska, Catal. Commun., 59, 222-225 (2015).

    CAS  Google Scholar 

  15. A. Schneemann, V. Bon, I. Schwedler, et al., Chem. Soc. Rev., 43, 6062-6096 (2014).

    PubMed  CAS  Google Scholar 

  16. N. Aljammal, Ch. Jabbour, S. Chaemchuen, et al., Catalysts, 9, 512 (2019).

    CAS  Google Scholar 

  17. A. Bavykina, N. Kolobov, I. S. Khan, et al., Chem. Rev., https://doi.org/10.1021/acs.chemrev.9b00685 (2020).

  18. F. M. B. Coutinho, R. R. Souza, and A. S. Gomes, Eur. Polym. J. 40, 1525-1532 (2004).

    CAS  Google Scholar 

  19. S.-K. Ihm, M.-J. Chung, and K.-Y. Park, Ind. Eng. Chem. Res., 27, 41-45 (1988).

    CAS  Google Scholar 

  20. G. I. Golodets, Kataliz i Katalizatory, 18, 66-75 (1980).

    CAS  Google Scholar 

  21. T. G. Serebrii, N. V. Vlasenko, Yu. N. Kochkin, and P. E. Strizhak, Theor. Exp. Chem, 52, No. 3, 183-187 (2016).

    Google Scholar 

  22. N. V. Vlasenko, Yu. N. Kochkin, T. G. Serebrii, and P. E. Strizhak, Adsorp. Sci. Technol., 33, 545-551 (2015).

    CAS  Google Scholar 

  23. S. An, D. Song, B. Lu, et al., Chem. Eur. J., 21, 10786-10798 (2015).

    PubMed  CAS  Google Scholar 

  24. B. Corain, M. Zecca, and K. Jerabek, J. Mol. Catal. A Chem., 177, 3-20 (2001).

  25. E. Van de Steene, J. De Clercq, and J. W. Thybaut, Chem. Eng. J., 242, 170-179 (2014).

    Google Scholar 

  26. Y. N. Kochkin and N. V. Vlasenko, Theor. Exp. Chem, 38, No. 2, 129-134 (2002).

    CAS  Google Scholar 

  27. GOST 20298-74, Ion Exchange Resins. Cation Exchangers. Specifications [in Russian], Izd-vo Standartov, Moscow (1991).

  28. H. Singer and W. Stein, “Method for purification of fatty acid mixtures,” Pat. 3950365 USA C11C1/103, C07C51/47, C11B3/001, Publ. 13.04.1976.

  29. Y. M. Kochkin, N. V. Vlasenko, T. G. Serebriy, and P. E. Stryzhak, “Low-temperature mineral-organic acid catalyst for the synthesis of methyl-tert-butyl ether,” Pat. 115200 Ukraine MPK B01J 31/08, B01J 29/00, B01J 21/06, B01J 35/02, B01J 37/04, Publ. 10.04.2017.

  30. Ch. Butfersack, React. Polym., 10, 143-164 (1989).

    Google Scholar 

  31. J. H. Badia, C. Fite, R. Bringue, et al., Top. Catal., 58, 919-932 (2015).

    CAS  Google Scholar 

  32. A. G. Ogston, Trans. Faraday Soc., 54, 1754-1757 (1958).

    Google Scholar 

  33. K. Jerabek, L. Hankova, and L. Holub, J. Mol. Catal. A Chem., 333, 109-113 (2010).

  34. K. Jerabek, Anal. Chem., 57, 1602-1609 (1985).

    Google Scholar 

  35. B. Corain, P. Centomo, S. Lora, and M. Kralik, J. Mol. Catal. A Chem., 204, 755-762 (2003).

  36. G. Leofanti, M. Padovan, G. Tozzola, and B. Venturelli, Catal. Today, 41, 207-219 (1998).

    CAS  Google Scholar 

  37. C. Casas, R. Bringue, E. Ramirez, et al., Appl. Catal. A: Gen., 396, 129-139 (2011).

    CAS  Google Scholar 

  38. E. A. Pahnutova and Y. G. Slyzhov, Neorg. Mater., 51, No. 6, 634-639 (2015).

    Google Scholar 

  39. W. E. Farneth and R. J. Gorte, Chem. Rev., 95, 615-635 (1995).

    CAS  Google Scholar 

  40. G. Busca, Phys. Chem. Chem. Phys., 1, 723-736 (1999).

    CAS  Google Scholar 

  41. E. Brunner, Catal. Today, 38, 361-376 (1997).

    CAS  Google Scholar 

  42. D. Topaloglu Yazici and C. Bilgic, Surf. Interface Anal., 42, 959-962 (2010).

    Google Scholar 

  43. J. C. Vedrine, Res. Chem. Intermed., 41, 9387-9423 (2015).

    CAS  Google Scholar 

  44. S. P. Felix, C. Savill-Jowitt, and D. R. Brown, Thermochim. Acta, 433, 59-65 (2005).

    CAS  Google Scholar 

  45. A. Auroux, Top. Catal., 4, 71-89 (1997).

    CAS  Google Scholar 

  46. M. Niwa and N. Katada, Catal. Surv. Jpn., 1, 215-226 (1997).

    CAS  Google Scholar 

  47. N. Katada, K. Suzuki, T. Noda, et al., Appl. Catal. A: Gen., 373, 208-213 (2010).

    CAS  Google Scholar 

  48. V. S. Levchuk, Kinetika i kataliz, 14, No. 2, 459-462 (1973).

  49. G. I. Kapustin, T. R. Bruyeva, G. M. Kutateladze, and A. L. Klyachko, Kinet. Katal., 28, No. 3, 759-762 (1987).

    CAS  Google Scholar 

  50. G. I. Kapustin and T. R. Brueva, Thermochim. Acta, 379, 71-75 (2001).

    CAS  Google Scholar 

  51. P. J. Pomonis and A. K. Ladavos, Adsorption of Gases at Porous Solid Surfaces. Encyclopedia of Surface and Colloid Science, Marcel Dekker, New York (2002), pp. 354-372.

  52. N. Bothe, F. Duscher, J. Klein, and H. Widdecke, Polymer, 20, 850-854 (1979).

    CAS  Google Scholar 

  53. Y. N. Kochkin, N. V. Vlasenko, and P. E. Stryzhak, Theor. Exp. Chem , 53, No. 2, 138-142 (2017).

    CAS  Google Scholar 

  54. Y. M. Sani, W. M. A. Wan Dauda, and A. R. Abdul Aziza, Appl. Catal. A: Gen., 470, 140-161 (2014).

    CAS  Google Scholar 

  55. G. Zundel, Angew. Chem. Int. Ed., 8, 499-509 (1969).

    CAS  Google Scholar 

  56. X. Zhang, Y. Zhao, S. Xu, et al., Nat. Commun., 5, 3170 (2014).

    PubMed  Google Scholar 

  57. N. V. Vlasenko, Yu. N. Kochkin, and A. M. Puziy, J. Mol. Catal. A: Chem., 253, 192-197 (2006).

  58. P. F. Siril and D. R. Brown, J. Mol. Catal. A: Chem., 252, 125-131 (2006).

  59. P. F. Siril, A. D. Davison, J. K. Randhawa, and D. R. Brown, J. Mol. Catal. A: Chem., 267, 72-78 (2007).

  60. A. Chakrabarti and M. M. Sharma, React. Polym., 20, 1-45 (1993).

    CAS  Google Scholar 

  61. T. Dogu, E. Aydin, N. Boz, et al., Int. J. Chem. React. Eng., 1, No. 1, doi:10.2202/1542-6580.1012 (2003).

  62. Z. P. Xu and K. T. Chuang, Chem. Eng. Sci., 52, 3011-3017 (1997).

    CAS  Google Scholar 

  63. A. P. Filippov, Adsorp. Sci. Technol., 30, 425-443 (2012).

    CAS  Google Scholar 

  64. N. V. Vlasenko, Yu. N. Kochkin, A. P. Filippov, et al., Catal. Commun., 12, 1142-1145 (2011).

    CAS  Google Scholar 

  65. V. A. Royter, Kinet. Katal., 3, No. 4, 602-604 (1962).

    Google Scholar 

  66. N. V. Vlasenko, V. Y. Volfson, and S. A. Soloviev, Dokl. AN SSSR, 1, 51-53 (1980).

    Google Scholar 

  67. N. V. Vlasenko, Yu. N. Kochkin, A. P. Filippov, et al., Adsorp. Sci. Technol., 35, 630-640 (2017).

    CAS  Google Scholar 

  68. R. Soto Lopez, “Simultaneous etherification of C4 and C5 iso-olefins with ethanol over acidic ion-exchange resins for greener fuels.” Doctoral thesis, Barcelona, Universidad de Barcelona (2017).

  69. L. K. Rihko, P. Kiviranta-Paakkonen, and A. O. I. Krause, Ind. Eng. Chem. Res., 36, 614-621 (1997).

    CAS  Google Scholar 

  70. T. Zhang and R. Datta, Ind. Eng. Chem. Res., 34, 2247-2257 (1995).

    CAS  Google Scholar 

  71. P. M. Slomkiewicz, Appl. Catal. A: Gen., 269, 33-42 (2004).

    CAS  Google Scholar 

  72. T. Dogu, N. Boz, E. Aydin, et al., Ind. Eng. Chem. Res., 40, 5044-5051 (2001).

    CAS  Google Scholar 

  73. M. Iborra, J. F. Izquierdo, F. Cunill, and J. Tejero, Ind. Eng. Chem. Res., 31, 1840-1848 (1992).

    CAS  Google Scholar 

  74. C. Fite, M. Iborra, J. Tejero, et al., Ind. Eng. Chem. Res., 33, 581-591 (1994).

    CAS  Google Scholar 

  75. A. M. Al-Jarallah, A. B. Siddiqui, and A. K. K. Lee, Can. J. Chem. Eng., 66, 802-807 (1988).

    CAS  Google Scholar 

  76. D. Parra, J. Tejero, F. Cunill, et al., Chem. Eng. Sci., 49, 4563-4578 (1994).

    CAS  Google Scholar 

  77. J. A. Linnekoski, A. O. I. Krause, and L. Rihko, Ind. Eng. Chem. Res., 36, 310-316 (1997).

    CAS  Google Scholar 

  78. M. Umar, D. Patel, and B. Saha, Chem. Eng. Sci., 64, 4424-4432 (2009).

    CAS  Google Scholar 

  79. O. Francoisse and F. C. Thyrion, Chem. Eng. Process. Process Intensif., 30, 141-149 (1991).

    CAS  Google Scholar 

  80. C. Fite, J. Tejero, M. Iborra, et al., Appl. Catal. A: Gen., 169, 165-177 (1998).

    CAS  Google Scholar 

  81. C. Fite, J. Tejero, M. Iborra, et al., AIChE J., 44, 2273-2279 (1998).

    CAS  Google Scholar 

  82. R. Soto, N. Oktar, C. Fite, et al., Chem. Eng. Technol., 40, 889-899 (2016).

    Google Scholar 

  83. S.-K. Ihm, J.-H. Ahn, and Y.-D. Jo, Ind. Eng. Chem. Res., 35, 2946-2954 (1996).

    CAS  Google Scholar 

  84. E. Ruckenstein, A. S. Vaidyanathan, and G. R. Youngquist, Chem. Eng. Sci., 26, 1305-1318 (1971).

    CAS  Google Scholar 

  85. A. P. Filippov, N. V. Vlasenko, T. G. Serebryi, and P. E. Strizhak, Theor. Exp. Chem, 55, No. 5, 354-359 (2019).

    CAS  Google Scholar 

  86. O. L. Oudshoorn, M. Janissen, W. E. J. van Kooten, et al., Chem. Eng. Sci., 54, 1413-1418 (1999).

    CAS  Google Scholar 

  87. M. Boudart, Chem. Rev., 95, 661-666 (1995).

    CAS  Google Scholar 

  88. C. Costentin, S. Drouet, M. Robert, and J.-M. Saveant, J. Am. Chem. Soc., 134, 11235-11242 (2012).

    CAS  Google Scholar 

  89. S. C. George, M. Knorgen, and S. Thomas, J. Membrane Sci., 163, 1-17 (1999).

    CAS  Google Scholar 

  90. J. Feng and H. Zhang, Chem. Soc. Rev., 42, 387-410 (2013).

    PubMed  CAS  Google Scholar 

  91. B. Saparov and D. B. Mitzi, Chem. Rev., 116, 4558-4596 (2016).

    PubMed  CAS  Google Scholar 

  92. S. Kango, S. Kalia, A. Celli, et al., Prog. Polym. Sci., 38, 1232-1361 (2013).

    CAS  Google Scholar 

  93. G. M. Ziarani, N. Lashgari, and A. Badiei, J. Mol. Catal. A: Chem., 397, 166-191 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Vlasenko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 56, No. 5, pp. 289-303, September-October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasenko, N.V., Stryzhak, P.E. Role of the Morphology of Sulfonic Resin Catalysts in the Etherification of Ethanol with iso-Butylene: A Review. Theor Exp Chem 56, 309–328 (2020). https://doi.org/10.1007/s11237-020-09661-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09661-3

Keywords

Navigation