Skip to main content
Log in

Catalytic Properties of ZnLaZrSi-Oxide Systems in the Process of Obtaining 1,3-Butadiene from Ethanol–Aqueous Mixtures

  • Published:
Theoretical and Experimental Chemistry Aims and scope

The catalytic properties of ZnLaZrSi-oxide systems prepared on the basis of different types of silica (SBA-15, MCM-41, MCM-48, MCF, large-pore silica, Aerosil A-175) in the process of obtaining 1,3-butadiene (BD) from ethanol–aqueous mixtures were studied. It has been determined that the porous structure characteristics are not critical parameters for achieving high selectivity and yield of BD. The activity and selectivity of catalysts depends on the acid–base properties of their surface, which are determined by the type of silica. High values of selectivity for BD are achieved in the presence of catalysts based on KSKG silica (SBD = 65-68%) and SBA-15 (SBD = 63%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. J. A. Posada, A. D. Patel, A. Roes, et al., Bioresour. Technol., 135, 490-499 (2013), https://doi.org/10.1016/i.biortech.2012.09.058.

    Article  PubMed  CAS  Google Scholar 

  2. J. Pui, H. Li, X. Zhou, et al., Phys. Chem. Chem. Phys., 21, 22351-22358 (2019), https://doi.org/10.1039/c9cp04187g.

    Article  CAS  Google Scholar 

  3. R. G. Grim, A. T. To, C. A. Farberow, et al., ACS Catal., 9, 4145-4172 (2019), https://doi.org/10.1021/acscatal.8b03945.

    Article  CAS  Google Scholar 

  4. R. Dastillung, B. Fischer , M. Jacquin , and R. Huyghe, “Method for the production of butadiene from ethanol in one low-water- and low-energy-consumption reaction step,” Pat. US 20170267604 Al, Publ. 21.09.2017.

  5. D. Cai, Q. Zhu, C. Chen, et al., J. Taiwan Inst. Chem. Eng., 82, 137-143 (2018), https://doi.org/10.1016/j.jtice.2017.11.002.

    Article  CAS  Google Scholar 

  6. G. Pomalaza, M. Capron, V. Ordomsky, and F. Dumeignil, Catalysts, 6, 203 (2016), https://doi.org/10.1016/j.jtice.2017.11.002.

    Article  CAS  Google Scholar 

  7. P. I. Kyriienko, S. O. Larina, S. O. Soloviev, et al., Theor. Exp. Chem., 56, 213-242 (2020), https://doi.org/10.1007/s11237-020-09654-2.

    Article  CAS  Google Scholar 

  8. G. M. Cabello Gonzalez, P. Concepcionb, A. L. Villanueva Peralesa, et al., Fuel Process. Technol., 193, 263-272 (2019), https://doi.org/10.1016/j.apcata.2018.11.010.

    Article  CAS  Google Scholar 

  9. G. Pomalaza, P. Arango, M. Capron, and F. Dumeignil, Catal. Sci. Technol., 10, 4860-4911 (2020), https://doi.org/10.1039/D0CY00784F.

    Article  CAS  Google Scholar 

  10. M. D. Jones, C. G. Keir, C. Di Iulio, et al., Catal. Sci. Technol., 1, 267-272 (2011), https://doi.org/10.1039/c0cy00081g.

    Article  CAS  Google Scholar 

  11. V. L. Sushkevich, I. I. Ivanova, and E. Taarning, Green Chem., 17, 2552-2559 (2015), https://doi.org/10.1039/C4GC02202E.

    Article  CAS  Google Scholar 

  12. V. L. Dagle, M. D. Flake, T. L. Lemmon, et al., Appl. Catal. B Environ., 236, 576-587 (2018), https://doi.org/10.1039/C4GC02202E.

    Article  CAS  Google Scholar 

  13. G. Pomalaza, G. Vofo, M. Capron, and F. Dumeignil, Green Chem., 20, 3203-3209 (2018), https://doi.org/10.1039/C8GC01211C.

    Article  CAS  Google Scholar 

  14. H.-J. Chae, T.-W. Kim, Y.-K. Moon, et al., Appl. Catal. B Environ., 150-151, 596-604 (2014), https://doi.org/10.1016/j.cej.2014.09.110.

  15. M. Gao, M. Zhang, and H. Jiang, Catal. Surv. Asia, 22, 118-122 (2018), https://doi.org/10.1007/s10563-018-9243-8.

    Article  CAS  Google Scholar 

  16. O. V. Larina, N. D. Shcherban, P. I. Kyriienko, et al., ACS Sustain. Chem. Eng., 8, 16600–1661 (2020), https://doi.org/10.1021/acssuschemeng.0c05925.

  17. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Theor. Exp. Chem., 51, 252-258 (2015), https://doi.org/10.1007/s10563-018-9243-8.

  18. O. V. Larina, P. I. Kyriienko, D. Y. Balakin, et al., Catal. Sci. Technol., 9, 3964-3978 (2019), https://doi.org/10.1039/C9CY00991D.

  19. L. Silvester, J. F. Lamonier, C. Lamonier, et al., ChemCatChem, 9, 2250-2261 (2017), https://doi.org/10.1002/cctc.201601480.

  20. J. L. Cheong, Y. Shao, S. J. R. Tan, et al., ACS Sustain. Chem. Eng., 4, 4887-4894 (2016), https://doi.org/10.1021/acssuschemeng.6b01193.

  21. M. M. Kurmach, O. V. Larina, P. I. Kyriienko, et al., ChemistrySelect, 3, 8539-8546 (2018), https://doi.org/10.1002/slct.201801971.

  22. O. V. Larina, P. I. Kyriienko, and S. O. Soloviev, Theor. Exp. Chem., 52, 51-56 (2016), https://doi.org/10.1007/s11237-016-9450-1.

  23. T. Miyazawa, Y. Tanabe, I. Nakamura, et al., Catal. Sci. Technol., (2020), doi https://doi.org/10.1039/d0cy01453b.

  24. J. Velasquez Ochoa, C. Bandinelli, O. Vozniuk, et al., Green Chem., 18, 165-1663 (2016), https://doi.org/10.1039/C5GC02194D.

  25. P. I. Kyriienko, O. V. Larina, S. Dzwigaj, et al., Theor. Exp. Chem., 55, 241-247 (2019), https://doi.org/10.1007/s11237-019-09618-1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Kyriienko.

Additional information

Translated from Teoretychna ta Eksperymentalna Khimiya, Vol. 56, No. 5, pp. 304-311, September-October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kyriienko, P.I., Larina, O.V., Scherban, N.D. et al. Catalytic Properties of ZnLaZrSi-Oxide Systems in the Process of Obtaining 1,3-Butadiene from Ethanol–Aqueous Mixtures. Theor Exp Chem 56, 329–337 (2020). https://doi.org/10.1007/s11237-020-09662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-020-09662-2

Keywords

Navigation