Skip to main content

Advertisement

Log in

Total kinetic energy and mass yields from the fast neutron-induced fission of \(^{239}\hbox {Pu}\)

  • Regular Article – Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The total kinetic energy (TKE) release in fission is an important observable, constituting over 80% of the energy released in fission (\(\hbox {E}_{f} \approx 200~\hbox {MeV}\)). While the TKE release in the \(^{239}\hbox {Pu}\)(n,f) reaction was previously measured up to 50 MeV incident neutron energy (\(\hbox {E}_{n}\)), there were features in TKE release at the highest values of \(\hbox {E}_{n}\) that were puzzling. There was a marked flattening of TKE release from \(\hbox {E}_{n} = 30\) to 50 MeV, in disagreement with the clearly decreasing TKE observed from \(\hbox {E}_{n} = 0.5\) to 30 MeV. To verify and clarify this trend, TKE measurements at higher values of \(\hbox {E}_n\) were made. We present absolute measurements of TKE release in \(^{239}\hbox {Pu}\)(n,f) from \(\hbox {E}_{n} = 2.4\) to 100 MeV. We used silicon PIN detectors to measure the fragment energies and deduce mass-yield curves using the 2E-method. We also discuss fission asymmetry and the relationships between approximate fission fragment mass and distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Statement of data availability

The datasets and analysis programs employed are available from the corresponding author on reasonable request. Supplementary material can be found online at the journal website.

References

  1. J.P. Unik, J.E. Gindler, Argonne National Lab Report ANL-7748 (1971), https://www.osti.gov/biblio/4010075. Accessed 17 Sept 2020

  2. R. Vandenbosch, J.R. Huizenga, Nuclear Fission (Academic Press, New York, 1973)

  3. V.E. Viola, K. Kwiatkowski, M. Walker, Phys. Rev. C 31, 1550 (1985)

    ADS  Google Scholar 

  4. W. Loveland, D.J. Morrissey, G.T. Seaborg, Modern Nuclear Chemistry (Wiley, Hoboken, 2006)

  5. D.G. Madland, Nucl. Phys. A 772, 113 (2006)

    ADS  Google Scholar 

  6. C. Wagemans, Nucl. Fission Process (1991)

  7. M. Caamaño, F. Farget, Phys. Lett. B 770, 72 (2017)

    ADS  Google Scholar 

  8. M. Albertsson, B.G. Carlsson, T. Døssing, P. Möller, J. Randrup, S. Åberg, Eur. Phys. J. A 56, 46 (2020)

    ADS  Google Scholar 

  9. F. Gönnenwein, Phys. Proc. 47, 107 (2013)

    ADS  Google Scholar 

  10. A. Bulgac, S. Jin, K.J. Roche, N. Schunck, I. Stetcu, Phys. Rev. C 100, 034615 (2019)

    ADS  Google Scholar 

  11. G. Scamps, C. Simenel, Nature 564, 382 (2018)

    ADS  Google Scholar 

  12. K. Godbey, A.S. Umar, C. Simenel, Phys. Rev. C 100, 024610 (2019)

    ADS  Google Scholar 

  13. B.D. Wilkins, E.P. Steinberg, R.R. Chasman, Phys. Rev. C 14, 1832 (1976)

    ADS  Google Scholar 

  14. M. Albertsson, B.G. Carlsson, T. Døssing, P. Möller, J. Randrup, S. Åberg, Phys. Lett. B 803, 135276 (2020)

    Google Scholar 

  15. P. Möller, S.G. Nilsson, Phys. Lett. B 31, 283 (1970)

    ADS  Google Scholar 

  16. P. Möller, Nucl. Phys. A. 192, 529 (1972)

    ADS  Google Scholar 

  17. P. Möller, D.G. Madland, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001)

    ADS  Google Scholar 

  18. M. Caamaño, F. Farget, O. Delaune, K.-H. Schmidt, C. Schmitt, L. Audouin, C.-O. Bacri, J. Benlliure, E. Casarejos, X. Derkx, B. Fernández-Dominguez, L. Gaudefroy, C. Golabek, B. Jurado, A. Lemasson, D. Ramos, C. Rodríguez-Tajes, T. Roger, A. Shrivastava, Phys. Rev. C 92, 034606 (2015)

    ADS  Google Scholar 

  19. C. Simenel, A.S. Umar, Phys. Rev. C 89, 031601 (2014)

    ADS  Google Scholar 

  20. M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, W.M. Strutinsky, C.Y. Wong, Rev. Mod. Phys. 44, 320 (1972)

    ADS  Google Scholar 

  21. V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968)

    ADS  Google Scholar 

  22. M. Brack, P. Quentin, Nucl. Phys. A 361, 35 (1981)

    ADS  Google Scholar 

  23. J.F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 428, 23c (1984)

    ADS  Google Scholar 

  24. H. Pasca, A.V. Andreev, G.G. Adamian, N.V. Antonenko, Phys. Rev. C 99, 064611 (2019)

    ADS  Google Scholar 

  25. A. Tudora, F.-J. Hambsch, V. Tobosaru, Nucl. Sci. Eng. 192, 52 (2018)

    Google Scholar 

  26. P. Marini, J. Taieb, B. Laurent, G. Belier, A. Chatillon, D. Etasse, P. Morfouace, M. Devlin, J.A. Gomez, R.C. Haight, K.J. Kelly, J.M. O’Donnell, K.T. Schmitt, Phys. Rev. C 101, 044614 (2020)

    ADS  Google Scholar 

  27. U. Brosa, S. Grossmann, A. Müller, Z. Naturfor A. 41a, 1341 (1986)

    ADS  Google Scholar 

  28. J.P. Lestone, T.T. Strother, Nucl. Data Sheets 118, 208 (2014)

    ADS  Google Scholar 

  29. R. Müller, A.A. Naqvi, F. Käppeler, F. Dickmann, Phys. Rev. C 29, 885 (1984)

    ADS  Google Scholar 

  30. A.A. Naqvi, F. Käppeler, F. Dickmann, R. Müller, Phys. Rev. C 34, 218 (1986)

    ADS  Google Scholar 

  31. R. Yanez, J. King, J.S. Barrett, W. Loveland, N. Fotiades, H.Y. Lee, Nucl. Phys. A 970, 65 (2018)

    ADS  Google Scholar 

  32. A. Protopopov, M. Kuznetsov, E. Dermendzhiev, Sov. Phys. JETP 11, 279 (1960)

    Google Scholar 

  33. H. Crane, C. Lauritsen, Phys. Rev. 44, 783 (1933)

    ADS  Google Scholar 

  34. W. Holubarsch, E. Pfeiffer, F. Gönnenwein, Nucl. Phys. A 171, 631 (1971)

    ADS  Google Scholar 

  35. D. Higgins, U. Greife, F. Tovesson, B. Manning, D. Mayorov, S. Mosby, K. Schmitt, Phys. Rev. C 101, 014601 (2020)

    ADS  Google Scholar 

  36. N.R. Brown, J.J. Powers, M. Todosow, M. Fratoni, H. Ludewig, E.E. Sunny, G. Raitses, A. Aronson, Nucl. Tech. 194, 233 (2016)

    Google Scholar 

  37. J. King, R. Yanez, W. Loveland, J.S. Barrett, B. Oscar, N. Fotiades, F. Tovesson, H.Y. Lee, Eur. Phys. J. A 53, 238 (2017)

    ADS  Google Scholar 

  38. K. Meierbachtol, F. Tovesson, D.L. Duke, V. Geppert-Kleinrath, B. Manning, R. Meharchand, S. Mosby, D. Shields, Phys. Rev. C 94, 034611 (2016)

    ADS  Google Scholar 

  39. S. Isaev, R. Prieels, Th Keutgen, J. Van Mol, Y. El Masri, P. Demetriou, Nucl. Phys. A 809, 1 (2008)

    ADS  Google Scholar 

  40. V.A. Rubchenya, W.H. Trzaska, I.M. Itkis, M.G. Itkis, J. Kliman, G.N. Kniajeva, N.A. Kondratiev, E.M. Kozulin, L. Krupa, I.V. Pokrovski, V.M. Voskressenski, F. Hanappe, T. Materna, O. Dorvaux, L. Stuttge, G. Chubarian, S.V. Khlebnikov, D.N. Vakhtin, V.G. Lyapin, Nucl. Phys. A 734, 253 (2004)

    ADS  Google Scholar 

  41. P.W. Lisowski, K.F. Schoenberg, Nucl. Instrum. Methods A 562, 910 (2006)

    ADS  Google Scholar 

  42. M.J. Bennett, W.E. Stein, Phys. Rev. 156, 1277 (1967)

    ADS  Google Scholar 

  43. J.C.D. Milton, J.S. Fraser, Can. J. Phys. 40, 1626 (1962)

    ADS  Google Scholar 

  44. J.H. Neiler, F.J. Walter, H.W. Schmitt, Phys. Rev. 149, 894 (1966)

    ADS  Google Scholar 

  45. W. Reisdorf, J. Unik, L. Glendenin, H. Griffin, Nucl. Phys. A 177, 337 (1971)

    ADS  Google Scholar 

  46. C. Wagemans, E. Allaert, A. Deruytter, R. Barthélémy, P. Schillebeeckx, Phys. Rev. C 30, 218 (1984)

    ADS  Google Scholar 

  47. N.I. Akimov, V.G. Vorob’eva, V.N. Kabenin, N.P. Kolosov, B.D. Kuz’minov, A.I. Sergachev, L.D. Smirenkina, M.Z. Tarasko, Sov. J. Nucl. Phys. 13, 272 (1971)

    Google Scholar 

  48. A. Göök, C. Eckardt, J. Enders, M. Freudenberger, A. Oberstedt, S. Oberstedt, Phys. Rev. C 96, 044301 (2017)

    ADS  Google Scholar 

  49. M. Silveira, A. Pica, W. Loveland, Nucl. Instrum. Methods A 982, 164570 (2020)

    Google Scholar 

  50. V. Simutkin, Ph.D. Thesis, Uppsala University (2010). https://www.diva-portal.org/smash/get/diva2:374181/FULLTEXT01.pdf. Accessed 17 Sept 2020

  51. K.-H. Schmidt, B. Jurado, C. Amouroux, C. Schmitt, Nucl. Data Sheets 131, 107 (2016)

    ADS  Google Scholar 

  52. E.K. Hyde, The Nuclear Properties of the Heavy Elements Fission Phenomena, vol. 3 (Prentice-Hall, Upper Saddle River, 1964)

    Google Scholar 

  53. C.J. Bishop, R. Vandenbosch, R. Aley, R.W. Shaw Jr., I. Halpern, Nucl. Phys. A 150, 129 (1970)

    ADS  Google Scholar 

  54. H. Pasca, A.V. Andreev, G.G. Adamian, N.V. Antonenko, Y. Kim, Phys. Rev. C 93, 054602 (2016)

    ADS  Google Scholar 

  55. A. Oed, P. Geltenbort, R. Brissot, F. Gönnenwein, P. Perrin, E. Aker, D. Engelhardt, Nucl. Instr. Methods Phys. Res. 219, 569 (1984)

    ADS  Google Scholar 

  56. H.K. Erten, N.K. Aras, J. Inorg. Nucl. Chem. 41, 149 (1979)

    Google Scholar 

  57. H.W. Schmitt, J.H. Neiler, F.J. Walter, Phys. Rev. 141, 1146 (1966)

    ADS  Google Scholar 

  58. E. Weissenberger, P. Geltenbort, A. Oed, F. Gönnenwein, H. Faust, Nucl. Instrum. Methods A 248, 506 (1986)

    ADS  Google Scholar 

  59. L.C. Northcliffe, R.F. Schilling, At. Data Nucl. Data Tables 7, 233 (1970)

    ADS  Google Scholar 

  60. D. Hensle, Ph.D. thesis, Colorado School of Mines (2019). https://pqdtopen.proquest.com/pubnum/13811303.html. Accessed 17 Sept 2020

  61. D. Hensle et al., (NIFFTE Collaboration). Phys. Rev. C 102, 014605 (2020)

  62. M.B. Chadwick et al., Nucl. Data Sheets 112, 2887 (2011)

    ADS  Google Scholar 

  63. https://mcnp.lanl.gov/. Accessed 17 Sept 2020

  64. Private communication with L. Zaworski, LANSCE

Download references

Acknowledgements

We are grateful for the support of the facility operators at LANSCE and the OSTR for providing stable sources of neutrons. We are similarly grateful for the work of R. Yanez who designed the container used for shipping targets, C. Prokop for assisting with target handling at LANSCE prior to the experiment, and N. Fotiades for many fruitful conversations. This material is based upon work supported in part by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under award number DE-FG-06-97ER41026 (OSU) and under contract 89233218CNA000001 (LANL). University collaborators acknowledge support from this work from the DOE-NNSA Stewardship Science Academic Alliances Program under Grant No. DE-NA0003907. This research benefited from the use of the LANSCE accelerator facility. Nuclides used in this research were supplied by the United States Department of Energy Office of Science by the Isotope Program in the Office of Nuclear Physics.

Author information

Authors and Affiliations

Authors

Contributions

The experiment was designed and proposed and overseen by WL. Experimental data were collected by AC, AP, LY, and WL with critical assistance from HYL and SAK. AC and WL performed the primary data analysis. All authors contributed to the manuscript preparation, and have read and approved the final manuscript.

Corresponding author

Correspondence to Walter Loveland.

Additional information

Communicated by Robert Janssens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemey, A., Pica, A., Yao, L. et al. Total kinetic energy and mass yields from the fast neutron-induced fission of \(^{239}\hbox {Pu}\). Eur. Phys. J. A 56, 297 (2020). https://doi.org/10.1140/epja/s10050-020-00295-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-020-00295-6

Navigation