Skip to main content
Log in

Self-Organizing Transport Model of a Spark Discharge in a Thunderstorm Cloud

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We propose a small-scale transport model of the electric-discharge tree formation and analyze its implementation for a characteristic case of the thundercloud conditions. The following innovative features of the model can be emphasized: no connection to the spatial grid, high spatiotemporal resolution, and allowance for the asymmetry of the development of the positive and negative streamers and the time evolution of the discharge-channel parameters. The criterion of the streamer-to-leader transition, which is used in this work, is formulated in terms of the channel temperature and is based on the well-known mechanism of ionization-overheating instability, which is universal for the spark discharge. Within the framework of the described approach, a heated well-conducting leader channel is formed by combining the currents of tens of thousands of streamers, so that each of them initially has f negligible conductivity and a temperature that does not differ from the ambient temperature. The model bileader tree has electrodynamic characteristics that are intermediate between those known for the laboratory long spark and the developed lightning, which is expected for an “immature” lightning leader. The morphology and electrical parameters of the calculated discharge tree of the incipient model lightning leader agree with the modern data on the lightning-discharge development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Iudin, Radiophys. Quantum Electron., 60, No. 5, 374–394 (2017). https://doi.org/https://doi.org/10.1007/s11141-017-9807-x

  2. T. C. Marshall, M. P. McCarthy, and W. D. Rust, J. Geophys. Res., 100, No. D4, 7097–7103 (1995). https://doi.org/https://doi.org/10.1029/95JD00020

  3. L. B. Loeb, J. Geophys. Res., 71, No. 20, 4711–4721 (1966). https://doi.org/https://doi.org/10.1029/JZ071i020p04711

  4. C. T. Phelps, J. Atmos. Sol.-Terr. Phys., 36, No. 1, 103–111 (1974). https://doi.org/https://doi.org/10.1016/0021-9169(74)90070-1

  5. R. F. Griffiths and C. T. Phelps, J. Geophys. Res., 81, No. 21, 3671–3676 (1976). https://doi.org/https://doi.org/10.1029/JC081i021p03671

  6. D. Petersen, M. Bailey, W. H. Beasley, et al., J. Geophys. Res., 113, No. D17, D17205 (2008). https://doi.org/https://doi.org/10.1029/2007JD009036

  7. D. I. Iudin, S. S. Davydenko, V. M. Gotlib, et. al., Phys. Usp., 61, 766–778 (2018). https://doi.org/https://doi.org/10.3367/UFNe.2017.04.038221

  8. D. I. Iudin, V. A. Rakov, A. A. Syssoev and A. A. Bulatov, Proc. Int. Symp. “Thunderstorm and Elementary Particle Acceleration” (TEPA-2018). September 17–20, 2018. Byurakan, Armenia, p. 118–136.

  9. D. I. Iudin, V. A. Rakov, A. A. Syssoev, et al., Clim. Atm. Sci., 2, No. 1, 46 (2019). https://doi.org/https://doi.org/10.1038/s41612-019-0102-8

  10. D. I. Iudin, V. A. Rakov, E. A. Mareev, et al., J. Geophys. Res. Atmos., 122, No. 12, 6416–6430 (2017). https://doi.org/https://doi.org/10.1002/2016jd026261

  11. E. R. Mansell, D. R. MacGorman, C. L. Ziegler, and J.M. Straka, J. Geophys. Res. Atmos., 107, No.D9, 4075 2 (2002). https://doi.org/https://doi.org/10.1029/2000jd000244

  12. E. R. Mansell, C. L. Ziegler, and E. C. Bruning, J. Atm. Sci., 67, No. 1, 171–194 (2010). https://doi.org/https://doi.org/10.1175/2009jas2965.1

  13. J. A. Riousset, V. P.Pasko, P.R.Krehbiel, et al., J. Geophys. Res., 112, No. D15, D15203 (2007). https://doi.org/https://doi.org/10.1029/2006jd007621

  14. H. Wang, F. Guo, T. Zhao, et al., Atmos. Res., 169, 183–190 (2016). https://doi.org/https://doi.org/10.1016/j.atmosres.2015.10.011

  15. E. Williams in: V.Cooray, ed., The Lightning Flash, Institution of Engineering and Technology, London, p. 1–14 (2014). https://doi.org/https://doi.org/10.1049/PBPO069E_ch1

  16. É. M. Bazelyan and Yu. P.Raizer, Spark Discharge, CRC Press, Boca Raton (1998).

    Google Scholar 

  17. M. A.Uman and R. E.Voshall, J. Geophys. Res., 73, 497–506 (1968). https://doi.org/https://doi.org/10.1029/JB073i002p00497

  18. https://doi.org/https://doi.org/10.5281/zenodo.3560689

  19. É. M. Bazelyan and Yu. P.Raizer, Lightning Physics and Lightning Protection, CRC Press, Boca Raton (2000).

    Book  Google Scholar 

  20. I. Gallimberty, G. Bacchiega, A. Bondiou-Clergerie, et al., C. R. Physique, 3, 1335–1359 (2002). https://doi.org/https://doi.org/10.1016/S1631-0705(02)01414-7

  21. V. A. Rakov and M. A.Uman, Lightning: Physics and Effects, Cambridge University Press, New York (2003).

    Book  Google Scholar 

  22. Yu.P.Raizer, Physics of Gas Discharge [in Russian], Intellekt, Dolgoprudny (2009).

  23. V. A. Rakov, J. Geophys. Res., 103, No. D2, 1879–1887 (1998). https://doi.org/https://doi.org/10.1029/97jd03116

  24. M.N. O. Sadiku, Elements of Electromagnetics. 7th ed., Oxford University Press, Oxford (2018).

    Google Scholar 

  25. O. A. van der Velde, J. Geophys. Res. Atmos., 118, No. 24, 13504–13519 (2013). https://doi.org/https://doi.org/10.1002/2013jd020257

  26. G. Maslowski and V. A. Rakov, J. Geophys. Res., 111, No. D14, D14110 (2006). https://doi.org/https://doi.org/10.1029/2005jd006858

  27. A. Luque and E. Ute, New J. Phys., 16, No. 1, 013039 (2014). https://doi.org/https://doi.org/10.1088/1367-2630/16/1/013039

  28. https://github.com/DAlexis/self-organizing-transport-model

  29. J. L. Bentley, Commun. ACM, 18, No. 9, 509–517 (1975). https://doi.org/https://doi.org/10.1145/361002.361007

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bulatov.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 63, No. 2, pp. 135–154, February 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, A.A., Iudin, D.I. & Sysoev, A.A. Self-Organizing Transport Model of a Spark Discharge in a Thunderstorm Cloud. Radiophys Quantum El 63, 124–141 (2020). https://doi.org/10.1007/s11141-020-10041-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-020-10041-z

Navigation