Skip to main content
Log in

Flow characteristic during injection molding of PC/MWNT nanocomposites

  • Article
  • Published:
Korea-Australia Rheology Journal Aims and scope Submit manuscript

Abstract

This work investigates the flow characteristic during injection molding process of PC/MWNT nanocomposites especially focusing on jetting. The initial flow pattern while filling has been compared with that of neat and other particle-filled PCs. The experimental results show that the flow of PC/MWNT 5% is comparable to that of PC/GF 15% and PC/CF 10%. It has been found that small amount of filled MWNT causes significant filling difficulty. Based on rheological investigations, this is attributed to extraordinary shear thinning by MWNT fillers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hadithi, T.S.R., H.A. Barnes, and K. Walters, 1992, The relationship between the linear (oscillatory) and nonlinear (steady-state) flow properties of a series of polymer and colloidal systems, Colloid. Polym. Sci. 270, 40–46.

    Article  CAS  Google Scholar 

  • Bao, S.P. and S.C. Tjong, 2008, Mechanical behaviors of polypropylene/carbon nanotube nanocomposites: The effects of loading rate and temperature, J. Mater. Sci. Eng. A 485, 508–516.

    Article  Google Scholar 

  • Battisti, M., L. Perko, and S. Arunachalam, 2018, Influence of elongational flow generating nozzles on material properties of polypropylene nanocomposites, Polym. Eng. Sci. 58, 3–12.

    Article  CAS  Google Scholar 

  • Bose, S., A.R. Bhattacharyya, A.R. Kulkarni, and P. Potschke, 2009, Electrical, rheological and morphological studies in cocontinuous blends of polyamide 6 and acrylonitrile-butadienestyrene with multiwall carbon nanotubes prepared by melt blending, Compos. Sci. Technol. 69, 365–372.

    Article  CAS  Google Scholar 

  • Choi, S.J. and S.K. Kim, 2011, Multi-scale filling simulation of micro-injection molding process, J. Mech. Sci. Technol. 25, 117–124.

    Article  Google Scholar 

  • Dealy, J.M. and K.F. Wissbrun, 1990, Melt rheology and its role in plastics processing theory and applications, Kluwer Academic Publishers.

  • Ganss, M., B.K. Satapathy, M. Thunga, R. Weidisch, P. Potschke, and D. Jehnichen, 2008, Structural interpretations of deformation and fracture behavior of polypropylene/multiwalled carbon nanotube composites, Acta Mater. 56, 2247–2261.

    Article  CAS  Google Scholar 

  • Garcia, M. C., A.C.S. Netto, and A.J. Pontes, 2018, Experimental study of shrinkage and ejection forces of reinforced polypropylene based on nanoclays and short glass fibers, Polym. Eng. Sci. 58, 55–62.

    Article  CAS  Google Scholar 

  • Han, C.D., 2007, Rheology and Processing of Polymeric Materials, Oxford University Press, New York.

    Book  Google Scholar 

  • Hong, J., H.S. Shim, J.H. Lee, M.K. Kwon, D.I. Chung, and S.K. Kim, 2015, Characterization of color change in injection molding process using hot runner, Transactions of the Korean Society of Mechanical Engineers A, 39, 111–115.

    Article  Google Scholar 

  • Hong, J., S.K. Kim, and Y.H. Cho, 2020, Flow and solidification of semi-crystalline polymer during micro-injection molding, Int. J. Heat Mass Transf. 153, 119576.

    Article  CAS  Google Scholar 

  • Jain, S., J. Goossens, G. Peters, M. Duin, and P.J. Lemstra, 2008, Strong decrease in viscosity of nanoparticle-filled polymer melts through selective adsorption, Soft Matter 4, 1848–1854.

    Article  CAS  Google Scholar 

  • Kasaliwal, G., A. Goldel, and P. Potschke, 2009, Influence of processing conditions in small-scale melt mixing and compression molding on the resistivity and morphology of polycarbonate-MWNT composite, J. Appl. Polym. Sci. 112, 3494–3509.

    Article  CAS  Google Scholar 

  • Kim, S.K., 2019, Flow rate based framework for solving viscoplastic flow with slip, J. Non-Newton. Fluid Mech. 269, 37–46.

    Article  CAS  Google Scholar 

  • Kim, S.K. and A. Jeong, 2019, Numerical simulation of crystal growth in injection molded thermoplastics based on Monte Carlo method with shear rate tracking, Int. J. Precis. Eng. Manuf. 20, 641–650.

    Article  Google Scholar 

  • Kumar, D., G.S. Dangayach, and P.N. Rao, 2017, Experimental investigation on mechanical and thermo-mechanical properties of alumina filled polypropylene composites using injection molding process, Int. Polym. Process. 32, 316–325.

    Article  CAS  Google Scholar 

  • Lee, W.J., S.E. Lee, and C.G. Kim, 2006, The mechanical properties of MWNT/PMMA nanocomposites fabricated by modified injection molding, Compos. Struct. 76, 406–410.

    Article  Google Scholar 

  • Liang, S., K. Wang, D. Chen, Q. Zhang, R. Du, and Q. Fu, 2008, Shear enhanced interfacial interaction between carbon nanotubes and polyethylene and formation of nanohybrid shishkebabs, Polym. 49, 4925–4929.

    Article  CAS  Google Scholar 

  • Milner, S.T., 1996, Relating the shear-thinning curve to the molecular weight distribution in linear polymer melts, J. Rheol. 40, 303–315.

    Article  CAS  Google Scholar 

  • Mitsoulis, E., M. Battisti, A. Neunhaeuserer, L. Perko, and W. Friesenbichler, 2017, Flow behavior of PP-polymer nanocomposites in capillary and injection molding dies, Int. Polym. Process. 32, 217–226.

    Article  CAS  Google Scholar 

  • Moretti, F., M.M. Favaro, M.C. Branciforti, and R.E.S. Bretas, 2010, Optical monitoring of the injection molding of intercalated polypropylene nanocomposites, Polym. Eng. Sci. 50, 1326–1339.

    Article  CAS  Google Scholar 

  • Muller, M.T., B. Krause, B. Kretzschmar, and P. Potschke, 2011, Influence of feeding conditions in twin-screw extrusion of PP/MWCNT composites on electrical and mechanical properties, Compos. Sci. Technol. 71, 1535–1542.

    Article  Google Scholar 

  • Oda, K, J.L. White, and E.S. Clark, 1976, Jetting phenomena in injection mold filling, Polym. Eng. Sci. 16, 585–592.

    Article  CAS  Google Scholar 

  • Pandey, G. and E.T. Thostenson, 2012, Carbon nanotube-based multifunctional polymer nanocomposites, Polym. Rev. 52, 355–416.

    Article  CAS  Google Scholar 

  • Prashantha, K., J. Soulestin, M.F. Lacrampe, P. Krawczak, G. Dupin, and M. Claes, 2009, Masterbatch-based multi-walled carbon nanotube filled polypropylene nanocomposites: Assessment of rheological and mechanical properties, Compos. Sci. Technol. 69, 1756–1763.

    Article  CAS  Google Scholar 

  • Prentice, P., 1995, Rheology and Its Role in Plastics Processing, Rapra Review Report, 7(12).

  • Richter, S., M. Saphiannikova, D. Jehnichen, M. Bierdel, and G. Heinrich, 2009, Experimental and theoretical studies of agglomeration effects in multi-walled carbon nanotube-polycarbonate melts, Express Polym. Lett. 3, 753–768.

    Article  CAS  Google Scholar 

  • Rizvi, S.J.A. and N. Bhatnagar, 2011, Microcellular PP vs. microcellular PP/MMT nanocomposites: A comparative study of their mechanical behavior, Int. Polym. Process, 26, 375–382.

    Article  CAS  Google Scholar 

  • Shu, H., M. Wang, T. Liu, W.D. Zhang, W.C. Tjiu, C. He, and X. Lu, 2009, Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding, Polym. Eng. Sci. 49, 1063–1068.

    Article  Google Scholar 

  • Vergnes, B., 2011, The use of apparent yield stress to characterize exfoliation in polymer nanocomposites, Int. Polym. Proc. 26, 229–232.

    Article  CAS  Google Scholar 

  • Villmow, T., S. Pegel, P. Potschke, and U. Wagenknecht, 2008, Influence of injection molding parameters on the electrical resistivity of polycarbonate filled with multi-walled carbon nanotubes, Compos. Sci. Technol. 68, 777–789.

    Article  CAS  Google Scholar 

  • Winter, H.H., 2009, Three views of viscoelasticity for Cox-Merz materials, Rheol. Acta. 48, 241–243.

    Article  CAS  Google Scholar 

  • Zhou, S., A.N. Hrymak, and M.R. Kamal, 2016, Electrical and morphological properties of microinjection molded polystyrene/multiwalled carbon nanotubes nanocomposites, Polym. Eng. Sci. 56, 1182–1190.

    Article  CAS  Google Scholar 

  • Zouari, R., T. Domenech, B. Vergnes, and E. Peuvrel-Disdier, 2012, Time evolution of the structure of organoclay/polypropylene nanocomposites and application of the time-temperature superposition principle, J. Rheol. 56, 725–734.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a NRF grant funded from the Korea government (No. NRF-2018R1A5A1024127 and 2020R1I1A2065650) and by the Institute Project of Korea Institute of Machinery and Materials (NK226E).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Kyoung Kim.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, JW., Yoo, YE. & Kim, S.K. Flow characteristic during injection molding of PC/MWNT nanocomposites. Korea-Aust. Rheol. J. 32, 261–269 (2020). https://doi.org/10.1007/s13367-020-0025-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13367-020-0025-2

Keywords

Navigation