Skip to main content
Log in

Effect of Grit Blasting Parameters on Surface and Near-Surface Properties of Different Metal Alloys

  • PEER REVIEWED
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In thermal spray, grit blasting is the standard method used to prepare the substrate surface before coating deposition. This study examines the effect of the grit blasting parameters on the residual stresses, roughness and hardness of three metal alloys with widely different mechanical properties: low-carbon steel, Ti-6Al-4V and Inconel 718. It also estimates the density of dislocations using the Williamson–Hall method. The dislocation structures of low-carbon steel grit blasted at different grit impingement angles were observed under a transmission electron microscope. The surface dislocation density was found to increase with the blasting time and angle of impact. Moreover, the depth profile of the dislocation density was in good agreement with that of the hardness profile of the blasted specimen. The residual stress depth profiles of each material at different blasting pressure showed an increase in the value and depth of maximum compressive residual stresses. Both surface residual stresses and roughness were found to increase with the grit blasting pressure, angle and, to some extent, with time and stand-off distance. The mechanisms of material erosion were found to be microcutting and indentation at lower and higher angles of abrasive impingement, respectively. The extent of damage of the materials was explained on the basis of the Johnson–Cook flow strength model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S. Kar, S. Paul, and P.P. Bandyopadhyay, Processing and Characterisation of Plasma Sprayed Oxides: Microstructure, Phases and Residual Stress, Surf. Coatings Technol., 2016, 304, p 364-374

    Article  CAS  Google Scholar 

  2. S.C. Jambagi and P.P. Bandyopadhyay, Plasma Sprayed Carbon Nanotube Reinforced Splats and Coatings, J. Eur. Ceram. Soc., 2017, 37(5), p 2235-2244

    Article  CAS  Google Scholar 

  3. S. Datta, D.K. Pratihar, and P.P. Bandyopadhyay, Modeling of Plasma Spray Coating Process using Statistical Regression Analysis, Int. J. Adv. Manuf. Technol., 2013, 65(5–8), p 967-980

    Article  Google Scholar 

  4. K.P. Chander, M. Vashista, K. Sabiruddin, S. Paul, and P.P. Bandyopadhyay, Effects of Grit Blasting on Surface Properties of Steel Substrates, Mater. Des., 2009, 30(8), p 2895-2902

    Article  Google Scholar 

  5. C. Fang and T.H. Chuang, Surface Morphologies and Erosion Rates of Metallic Building Materials after Sandblasting, Wear, 1999, 230(2), p 156-164

    Article  CAS  Google Scholar 

  6. B. Arifvianto, S.K.A. Wibisono, and M. Mahardika, Influence of Grit Blasting Treatment using Steel Slag Balls on the Subsurface Microhardness, Surface Characteristics and Chemical Composition of Medical Grade 316L Stainless Steel, Surf. Coatings Technol., 2012, 210, p 176-182

    Article  CAS  Google Scholar 

  7. M. Lieblich, S. Barriuso, J. Ibanez, L. Ruiz-de-lara, M. Diaz, J.L. Ocana, A. Alberdi, and J.L. Gonzalez-Carrasco, On the Fatigue Behavior of Medical Ti6Al4V Roughened by Grit Blasting and Abrasiveless Waterjet Peening, J. Mech. Behav. Biomed. Mater., 2016, 63(8), p 390-398

    Article  CAS  Google Scholar 

  8. D. Cattoni, C. Ferrari, L. Lebedev, L. Pazos, and H. Svoboda, Effect of Blasting on the Fatigue Life of Ti-6Al-7Nb and Stainless Steel AISI, 316 LVM, Procedia Mater. Sci., 2012, 1, p 461-468

    Article  CAS  Google Scholar 

  9. K. Tosha, and K. Iida, Residual Stress on the Grit Blasted Surfaces, Met. Behav. Surf. Eng., 1989, November, pp. 323–328.

  10. D. Sen, N.M. Chavan, D.S. Rao, and G. Sundararajan, Influence of Grit Blasting on the Roughness and the Bond Strength of Detonation Sprayed Coating, J. Therm. Spray Technol., 2010, 19(4), p 805-815

    Article  CAS  Google Scholar 

  11. M.F. Bahbou, P. Nylen, and J. Wigren, Effect of Grit Blasting and Spraying Angle on the Adhesion Strength of a Plasma-Sprayed Coating, J. Therm. Spray Technol., 2004, 13(4), p 508-514

    Article  Google Scholar 

  12. D.J. Varacalle, Jr., D.P. Guillen, D.M. Deason, W. Rhodaberger, and E. Sampson, Effect of Grit-Blasting on Substrate Roughness and Coating Adhesion, J. Therm. Spray Technol., 2006, 15(3), p 348-355

    Article  CAS  Google Scholar 

  13. J. Wigren, Technical Note: Grit Blasting as Surface Preparation Before Plasma Spraying, Surf. Coatings Technol., 1988, 34(1), p 101-108

    Article  CAS  Google Scholar 

  14. J.M. Guilemany, N. Llorca-Isern, and P.J. Szabo, Residual Stress Characterisation of Grit Blasted Surfaces, Surf. Eng., 1996, 12(1), p 77-79

    Article  CAS  Google Scholar 

  15. M. Mellali, A. Grimaud, A.C. Leger, P. Fauchais, and J. Lu, Alumina Grit Blasting Parameters for Surface Preparation in the Plasma Spraying Operation, J. Therm. Spray Technol., 1997, 6(2), p 217-227

    Article  CAS  Google Scholar 

  16. K. Bobzin, M. Ote, T.F. Linke, J. Sommer, and X. Liao, Influence of Process Parameter on Grit Blasting as a Pretreatment Process for Thermal Spraying, J. Therm. Spray Technol., 2016, 25, p 3-11

    Article  Google Scholar 

  17. H. Begg, M. Riley, and H. de Villiers Lovelock, Mechanization of the Grit Blasting process for Thermal Spray Coating Applications: A Parametric Study, J. Therm. Spray Technol., 2016, 25(1-2), pp. 12-20.

  18. P. Fu, C. Jiang, X. Wu, and Z. Zhang, Surface Modification of 304 Steel using Triple-Step Shot Peening, Mater. Manuf. Process., 2015, 30(6), p 693-698

    Article  CAS  Google Scholar 

  19. L.H. Wu and C.H. Jiang, Effect of Shot Peening on Residual Stress and Microstructure in the Deformed Layer of Lnconel 625, Mater. Trans., 2017, 58(2), p 164-166

    Article  CAS  Google Scholar 

  20. E. Nordin and B. Alfredsson, Experimental Investigation of Shot Peening on Case Hardened SS2506 Gear Steel, Exp. Tech., 2017, 41(4), p 433-451

    Article  Google Scholar 

  21. A. Hasçalık and U. Çaydaş, Electrical Discharge Machining of Titanium Alloy (Ti - 6Al - 4V), Appl. Surf. Sci., 2007, 253(22), p 9007-9016

    Article  Google Scholar 

  22. A. Thomas, M. El-wahabi, J.M. Cabrera, and J.M. Prado, High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 177(1–3), p 469-472

    Article  CAS  Google Scholar 

  23. S. Amada, T. Hirose, and T. Senda, Quantitative Evaluation of Residual Grits under Angled Blasting, Surf. Coatings Technol., 1999, 111(1), p 1-9

    Article  CAS  Google Scholar 

  24. T. Maruyama, K. Akagi, and T. Kobayashi, Effect of Blasting Parameters on Removability of Residual Grit, J. Therm. Spray Technol., 2006, 15(4), p 817-821

    Article  Google Scholar 

  25. A.K. Zak, W.H.A. Majid, M.E. Abrishami, and R. Youse, X-ray Analysis of ZnO Nanoparticles by Williamson-Hall and Size-Strain Plot Methods, Solid State Sci., 2011, 13(1), p 251-256

    Article  Google Scholar 

  26. T. Shintani and Y. Murata, Evaluation of the Dislocation Density and Dislocation Character in Cold Rolled Type 304 Steel Determined by Profile Analysis of X-ray Diffraction, Acta Mater., 2011, 59(11), p 4314-4322

    Article  CAS  Google Scholar 

  27. E.A. Trofimov, R.Y. Lutfullin, and R.M. Kashaev, Elastic Properties of the Titanium Alloy Ti-6Al-4V, Letters on Materials, 2015, 5(1), p 67-69

    Article  Google Scholar 

  28. M.G. Moore and W.P. Evans, Mathematical Correction for Stress in Removed Layers in X-ray Diffraction in Residual Stress Analysis, SAE Trans., 1958, 66, p 340-345

    Google Scholar 

  29. E. Lee, Machining Characteristics of the Electropolishing of Stainless Steel (STS316L), International J. Adv. Manuf. Technol., 2000, 16, p 591-599

    Article  Google Scholar 

  30. L. Yang, Y. Wu, A. Lassell, and B. Zhou, Electropolishing of Ti6Al4V Parts Fabricated by Electron Beam Melting, Proceedings of the 27th Annual International Solid Freeform Fabrication Symposium- An Additive Manufacturing Conference, 2016, pp. 1333–1344.

  31. M. Bauccio, ASM Metals Reference, in ASM international, 1993.

  32. F. Khodabakhshi and M. Kazeminezhad, The Effect of Constrained Groove Pressing on Grain Size, Dislocation Density and Electrical Resistivity of Low Carbon Steel, Mater. Des., 2011, 32(6), p 3280-3286

    Article  CAS  Google Scholar 

  33. S.M. Hassani-Gangaraj, A. Moridi, and M. Guagliano, From Conventional to Severe Shot Peening to Generate Nanostructured Surface Layer: A numerical study, IOP Conf. Ser. Mater. Sci. Eng., 2014, 63(1), p 1-9

    Google Scholar 

  34. S. Takaki, Limit of Dislocation Density and Ultra-Grain-Refining on Severe Deformation in Iron, Mater. Sci. Forum, 2003, 426–432, p 215-222

    Article  Google Scholar 

  35. J. Sun and Y.B. Guo, Material Flow Stress and Failure in Multiscale Machining Titanium Alloy Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 2009, 41(7–8), p 651-659

    Article  Google Scholar 

  36. W. Grzesik, P. Niesłony, and P. Laskowski, Determination of Material Constitutive Laws for Inconel 718 Superalloy Under Different Strain Rates and Working Temperatures, J. Mater. Eng. Perform., 2017, 26(12), p 5705-5714

    Article  CAS  Google Scholar 

  37. A.V. Levy, The Platelet Mechanism of Erosion of Ductile Metals, Wear, 1986, 108(1), p 1-21

    Article  CAS  Google Scholar 

  38. K. Vedantam, D. Bajaj, S. Brar, and S. Hill, Johnson-Cook Strength Models for Mild and DP 590 Steels, AIP Conf. Proc., 2006, 845(1), p 775-778

    Article  CAS  Google Scholar 

  39. S.A. Meguid, G. Shagal, and J.C. Stranart, Finite Element Modelling of Shot-Peening Residual Stresses, J. Mater. Process. Technol., 1999, 92–93, p 401-404

    Article  Google Scholar 

  40. A. Ninham, The Effect of Mechanical Properties on Erosion, Wear, 1988, 121(3), p 307-324

    Article  CAS  Google Scholar 

  41. V.B. Nguyen, Q.B. Nguyen, C.Y.H. Lim, Y.W. Zhang, and B.C. Khoo, Effect of air-borne particle–particle interaction on materials erosion, Wear, 2015, 322–323, p 17-31

    Article  Google Scholar 

  42. R. Balasubramaniam, J. Krishnan, and N. Ramakrishnan, An experimental study on the abrasive jet deburring of cross-drilled holes, J. Mat. Proc. Tech., 1999, 91(1–3), p 178-182

    Article  Google Scholar 

  43. M. Multigner, S. Ferreira-Barragans, E. Frutos, M. Jaafar, J. Ibanez, P. Marin, M.T. Perez-Prado, G. Gonzalez-Doncel, A. Asenjo, and J.L. Gonzalez-Carrasco, Superficial Severe Plastic Deformation of 316 LVM Stainless Steel Through Grit Blasting: Effects on Its Microstructure and Subsurface Mechanical Properties, Surf. Coatings Technol., 2010, 205(7), p 1830-1837

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Bandyopadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghara, T., Paul, S. & Bandyopadhyay, P.P. Effect of Grit Blasting Parameters on Surface and Near-Surface Properties of Different Metal Alloys. J Therm Spray Tech 30, 251–269 (2021). https://doi.org/10.1007/s11666-020-01127-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-020-01127-1

Keywords

Navigation